
1616:
Programmers Man-

ual

Version 4.089

August 1993

Applix 1616 microcomputer project
Applix pty limited

1616 Programmers Manual

Even though Applix has tested the software and reviewed the documentation,
Applixmakesno warrantyor representation, either expressor implied, with respect
to software, its quality, performance, merchantability, or fitness for a particular
purpose. As a result thissoftware is sold "as is,"andyou thepurchaser areassuming
the entire risk as to its quality and performance.

In no event will Applix be liable for direct, indirect, special, incidental, or
consequential damages resulting from any defect in the software or its docu-
mentation.

The laws in some countries or states may modify the effects of the disclaimer
above.

The original version of this manual was written by Andrew Morton
Additional introductory and tutorial material by Eric Lindsay
Editorial and design consultant: Jean Hollis Weber

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
Lot 1, Kent Street,
Yerrinbool, 2575
N.S.W. Australia
(048) 839 372

Private Applix BBS (ringback) on (02) 554 3114 and (02) 540 3595

 Copyright 1986, 1990 Applix Pty Limited. All Rights Reserved.
Revised material Copyright 1990 Eric Lindsay

ISBN 0 947341 01 3

MC68000 is a trademark of Motorola Inc.

1
Programming under 1616/OS v4

Here we describe the tools available to programmers for developing stand alone
application programs to run on the 1616 under1616/OS. In particular, the1616/OS
EPROM code entry points, the ‘system calls’, orsyscalls are individually
documented, and the standards and conventions whichshould be obeyed by a
1616 program are described.

The descriptions of the system calls are written from an assembly language
viewpoint, with a C programming language flavour. This documentation is
applicable to assembly language programs, and to any high-level language for
which an assembly language interface is available. This does not imply that
assembly language is essential; most Applix programs, including the operating
system itself, are written in C.

For best results, the reader should be familiar with either 68000 assembler lan-
guage, or C programs (preferably as used in Unix) or at least should read an
introduction to 68000 assembler, prior to attempting to make extensive use of the
material in this manual. The material presented herein does assume some back-
ground knowledge, and the beginner must be prepared to do some study prior to
makingextensive use of the system calls. By implication, the reader should already
havesomeexperience in theuse ofaprogramming language. AcompleteCtutorial,
including manual, source code, and code examples on disk, is available from
Applix.

There are some demonstration assembly language programs on the cassette tape
or floppy disk you received with your 1616. These contain examples of the use
of system calls, together with trap macro files.

In addition, the Users Disk for each version of the operating system contains
additional documentation on disk, describing many of the updates. In particular,
you will generally find an extensive range of C program header files. These header
files should be used when accessing the system calls, as they are consistent with
the documentation provided (this manual, for example, is heavily based upon the
files provided on disk). In general, the header files in theinclude directory can
be considered the most up to date authority on how to use the system calls. Files
provided for programmers include:

 Programming under 1616/OS v4 Programmers Page -1

blkerrcodes.h the error codes
blkio.h block and file input and output, multiblock
cassette.h cassette leader and lock information
chario.h Character file descriptors, chardriver structure
chdev.h chdev program andcdmiscsyscall header
datetime.h structure and storage of date and time
envstring.h user environment structure and control bits
files.h file manipulation structures, FCB, status bits
hwdefs.h hardware locations, interrupt definitions
mondefs.h monitor front end and interpreter
options.h defs for theoptionsyscall
process.h group process control structure, bits in proc flag
reloc.h relocatable file format and memory resident driver
scc.h constants and structures for serial I/O
signal.h signal definitions, a la Unix
spspace.h default stack spaces
ssdd.h disk controller locations, commands, etc
storedef.h needed byscc.h
syscalls.h all the system calls, by number (use this!)
types.h needed bysc.h
via.h 6522 VIA simulated interrupt vectors and locations
windows.h video window structure, plot modes, mouse

Additional information on low levelsystem calls,memory resident drivers,process
control and multi tasking is available in theTechnical Reference Manual, which
forms the logical extension of this manual.

Transient programs
Transientprograms load fromdisk. In1616/OS,unlikeUnix, theMC68000 is always
in ‘supervisor’ mode, unlike UNIX. There is little point in using ‘user’ mode in a
system of this kind.

Transient program conventions

It is desirable that general transient programs blend into the1616/OSenvironment
by working in a standard, predictable manner. Conventions which should be
observed are:

• Programs should, where possible, obtain their user-provided information
from the command line arguments, using theargc and argv constructs
available in C, as with the1616/OSinbuilt commands. Programs aretools,
and are used in combination with other programs to build further tools. In
particular, use the argv and argc constructions available under C.

Programs which interactively prompt the user to enter filenames, answer
questions and the like are a nuisance to drive from within shell files, par-
ticularly where argument substitution is used, and they cannot be successfully
chained to from other transient programs.

Page -2 Programmers Programming under 1616/OS v4

The operating system is multitasking; where possible ensure programs can
be run in background mode, without interaction with the user. Allow input
redirectionby using standard input, standardoutput andstandard error. Avoid
direct access to the hardware. Specific details on multitasking and multi user
programming appears in theTechnical Reference Manual.

Write your command argument processing so that the program is insensitive
to the order in which arguments appear on the command line.

• If a program detects an error on the command line it should print out a usage
message to standard error, of the form (for example):
File copying program Version 2.1, XYZ Pty.Ltd.
Usage: tpfilename infilename outfilename [-n]

Note that the function of the program, its version number and a usage format
message which describes how to use the program are all printed out. All
optional arguments in the usage message are put in square brackets. When
printing out a usage message use the first entry in the ‘argstr’ array (described
later) to represent the name of the program. This way you know what the
user of your program is calling it, rather than assuming that he uses the same
name for it as you did when you wrote the code.

• Do not produce unnecessary output! Programs which display copyright
messages, programmer’s names, version numbers, etc. are often awkward to
use in an operating system with the I/O redirection features of1616/OS. Often
all you wish from a program is its output, which can be redirected onto a
temporary file and then redirected onto the input of another program.
Undesired output can get in the way of all this. Version numbers, etc. are
useful; put a ‘-v’ flag into your program for verbose mode, as with the 1616
assembler, SSASM.

• Direct error messages to the standard error stream (handle $100). This
provides consistency and permits the user to direct error messages to a printer,
file, etc. without them getting mixed with normal output.

Transient program command line arguments

There are two types of executable program files supported under1616/OS. The
original type areexec files, indicated by a.exec at the end of their filename.
These are absolutely located programs. Their load address (and entry point) appear
under ‘LOAD’ in the directory listing. This style of program will probably not be
supported in future operating system releases, so all programs should be converted
to .xrel form prior to release.

The standard start address for.exec files is $4000, however programs may be
loaded in at higher addresses. When a transient program is invoked from the
command line the following steps occur:

• If it is an .exec file, the system loads the program into memory at the address
indicated by the file’s ‘load address’ field. If it is an.xrel file, the system
allocates memory for the file, loads and then relocates it.

 Programming under 1616/OS v4 Programmers Page -3

• Four longwords which contain information about the command line argu-
ments are pushed onto the MC68000’s stack. See below for details

• 1616/OStransfers control to the loaded program by performing an MC68000
‘JSR’ to its load address, hence the start of the file must be the entry point.

• The transient program executes. When it has finished it returns control to
1616/OSvia the MC68000 ‘RTS’ instruction, so the transient program must
maintain stack discipline. The value which the application program returns
in data register zero (d0) is the return value to1616/OSand to any program
which has run this one. A non-negative return value indicates no error. A
negative return (bit 31 set) indicates an error.

The four long words which are present on the stack, upon entry to transient pro-
grams, permit convenient access to the command line arguments which were
entered when the program was invoked. They are compatible with the ‘argc/argv’
construct which is available to C programs under UNIX, CP/M, MSDOS, etc.

The long words on the stack are:

Name Address Use

nargs 4(a7) This is the number of command line arguments, including
the name of the transient program file.nargs will always be at least
1.

argstr 8(a7) argstr is a pointer to the first entry in an array which
containsnargs pointers, each of which points to null-terminated
strings. The first pointer in the array points to the first command
line argument, etc.

argtype 12(a7) argtype is a pointer to an array ofnargs bytes, each of
which specifies the type of the corresponding command line argu-
ment. The bytes can have one of two values:

$02: A numeric argument
$04: A non-numeric argument

This array may be used in conjunction withnargs and theargval
array for accessing numeric data on the command line.

argval 16(a7) This is a pointer to the first entry in an array of long words,
each entry of which is a binary representation of the corresponding
number on the command line. This array must be qualified by the
argtype array: if the n’thentry in theargtype array is not $02 (numeric
argument) then the n’th entry in theargval array is undefined. Use
theargval array wherever possible: it converts hexadecimal, binary
and decimal numbers and promotes a standard transient program
argument format.

The second type of program file is thexrel file; these are relocatable programs
which may be loaded and run at any address in memory..xrel files are preferable
to .exec files. See the documentation on relocatable files for more details.

Page -4 Programmers Programming under 1616/OS v4

A relocatable file consists of a header, the code and data (executable at zero), and
the relocation information. The header has the following structure.

magic1 ushort magic number $601a (actually a BRA)
textlen int text length
datalen int data length
bsslen int BSS length
symtablen int symbol table length
stackspace int unused
text_begin int start address
reloc_flag ushort relocation bits follow

If the relocation flag is non-zero, then relocation information follows. This consists
of a longword, which is the offset into the loaded code of the first relocatable
longword. If zero, then the file contains no absolute self references. After the first
longword comes a series of bytes. Each byte is added to the current pointer to get
a pointer to the next longword which must be relocated. All byte offsets are even
numbers. The byte $01 means ‘add decimal 254 to the location pointer, without
performing a relocation’. This covers cases where two neighbouring relocatable
longwords are more than 254 bytes apart. The entire sequence is terminated with
a byte of $00.

The relcc C preprocessor produces relocatable programs from C. From
assembler, there is a shell file on theUsers Diskthat will produce a relocatable
program by performing two passes of the assembler.

Transient program memory model

A transient program cannot use any memory without requesting it from the system
memory allocator. See the memory manager section of theTechnical Reference
Manualfor details.

The memory range $0 to $3FF is reserved for 68000 vectors and some system use
(described later).

The memory range $400 to $3BFF is reserved for1616/OSusage.

The range $3C00 to $3FFF is used for copying in the boot block from a disk device
whenever the 1616 is reset.

 Programming under 1616/OS v4 Programmers Page -5

I/O addresses

The1616’s I/O devicesarememorymapped. Theiraddressesaregivenheremainly
for reference purposes; if possible you should use the available system calls for
I/O. All devices are one byte wide and are addressed as follows:

Address Mnemonic Usage

$600001 centlatch Centronics (parallel printer) latch

$600081 daclatch D/A converter latch

$600101 vidlatch Video latch

$600181 amuxlatch Analogue multiplexor latch

$600000 pal0 Video palette entry 0

$600020 pal1 Video palette entry 1

$600040 pal2 Video palette entry 2

$600060 pal3 Video palette entry 3

$700000 sccbcont SCC channel B control register

$700002 sccbdata SCC channel B data register

$700004 sccacont SCC channel A control register

$700006 sccadata SCC channel A data register

$700081 iport The input port

$700100 viabase VIA base address. VIA registers start at this
address and appear at every second byte address.

$700180 crtcaddr MC6845 CRTC address register

$700182 crtcdata MC6845 CRTC data register

Page -6 Programmers Programming under 1616/OS v4

Shadow registers

The four latches and the video pallette are write-only. We need to know their
current contents if we are to alter only some of their bits. There are also other
hardware setting that are more convenient if recorded in a fixed memory location.
For this reason there are a number of bytes called shadow registers which contain
the current contents of the latches and pallette. The shadow registers should be
updatedwhen the latchesandpallettesarechanged bydirect access to thehardware.

The shadow registers are:

Address Mnemonic Usage

$300 vlval image of video latch

$302 clval image of centronics latch

$304 dlval image of D/A converter latch

$306 alval image of analogue multiplexor latch

$308 palval0 image of pallette entry 0

$30A palval1 image of pallette entry 1

$30C palval2 image of pallette entry 2

$30E palval3 image of pallette entry 3

$310 ak_ctrl control key depressed if non-zero

$312 ak_shift Bit 0 left shift down
Bit 1 right shift down

$314 ak_alt Alt key down

$316 ak_capslock Capslock is active

$318 ak_numlock Keypad in numeric mode

There are some timing considerations which must be observed if we are to avoid
writing one of those programs which rarely but regularly fails. If you must bypass
the system calls and directly write to a latch or the palette, write to the shadow
register first. This means that if a higher priority interrupt routine catches your
code between the two writes, the desired byte will still reach the latch. One general
cure to this timing problem is to temporarily raise the processor interrupt priority
during the alterations, to prevent any other code from interfering.

Simulated interrupt vectors

The interrupts are autovectored on the 1616 and the SCC and the VIA do not
support multiple interrupt vectors, so1616/OSsimulates multiple interrupt vectors
for these devices. When the VIA or the SCC interrupts for any reason,1616/OS
ascertains from the device the reason(s) for the interrupt, and vectors through one
or more of the following addresses:

 Programming under 1616/OS v4 Programmers Page -7

(ISR stands for ‘interrupt service routine’)

$100 Pointer to VIA timer 1 timeout ISR

$104 Pointer to VIA timer 2 timeout ISR

$108 Pointer to VIA CB1 ISR

$10C Pointer to VIA CB2 ISR

$110 Pointer to VIA shift register ISR

$114 Pointer to VIA CA1 ISR

$118 Pointer to VIA CA2 ISR

$140 Pointer to SCC channel A character receive ISR

$144 Pointer to SCC channel A character transmit ISR

$148 Pointer to SCC channel A external/status ISR

$14C Pointer to SCC channel B character receive ISR

$150 Pointer to SCC channel B character transmit ISR

$154 Pointer to SCC channel B external/status ISR

It is the responsibility of each called interrupt service routine to clear the source
of its interrupt (and no others) from the interrupting device.

Interrupt priorities

1616/OSrequires that the 1616’s interrupting devices be set at the following prio-
rities:

Cassette IRQ Level 4 $70

SCC IRQ Level 3 $6C

VIA IRQ Level 2 $68

If you mask off some or all of these interrupts by raising the processor priority,
do it for as short a time as possible because the keyboard, vertical sync interrupts,
date/time drivers, cassette, sound and serial communications are all interrupt
driven.

The system never puts the interrupt priority over 7. Note thatMinix uses interrupt
5 ($74) for disk interrupts.

All interrupts on the 1616 are autovectored, so the interrupt vectors are in the range
$64 (level 1) to $7c (level 7)

Page -8 Programmers Programming under 1616/OS v4

Video colours

The 16 video colors are selected by writing 4-bit nibbles to either the video RAM
(in 320 column mode) or to the palette (640 column mode) or to the video latch
for the borders (both modes).

On a monochrome monitor the brightness should increase with increasing nibble
value, with a value of 0000 corresponding to black.

The colours map as follows:

Number Colour Mnemonic

0 Black PC_BLACK

1 Dark grey PC_DGREY

2 Dark blue PC_DBLUE

3 Mid blue PC_MBLUE

4 Dark green PC_DGREEN

5 Green PC_GREEN

6 Blue grey PC_BGREY

7 Light blue PC_LBLUE

8 Dark red PC_DRED

9 Red PC_RED

10 Dark violet PC_DVIOLET

11 Violet PC_VIOLET

12 Brown PC_BROWN

13 Yellow PC_YELLOW

14 Light grey PC_LGREY

15 White PC_WHITE

 Programming under 1616/OS v4 Programmers Page -9

Memory Layout

The organisation of memory is determined to some extent by the contents of the
MRDRIVERS file, or by the setting of the DIP switches on the 1616 motherboard,
so precise addresses cannot be given here. If you have an additional memory card,
all the addresses above the stack space will be increased by at least one megabyte.

$080000 Top of memory
512k Video Page

$078000 Top of bitmaps
480k 11k approx bitmap buffers

$075400 End of RAM disk
470k RAM disk

Memory resident drivers End of MRDs

Stack builds down from here Top of stack

Stack space

Memory allocator builds down from here Top of allocated
Free Memory memory

.exec programs build up from $004000

$004000 .exec file start
16k 1k area for boot block

$003C00
15k 1616/OS BSS segment

$000400
1k System vector table
$000000 Start of memory

The size of the video page, RAM disk, MR drivers, default pallette colours,
background colour, and the stack space are determined by the contents of the
MRDRIVERS file which is loaded at boot time. If you have a memory expansion
card, the video is at least one megabyte higher than shown. Video is at the very
top of memory, and can be any multiple of 32k, up to a half megabyte. You can
have multiple video screens (there is a syscallset_vdpfor swapping from one
display screen to another, and another calledset_vapfor changing which screen
will be used for updating the video - thus you can update a screen independent of
the display of another).

The bitmap buffers are reserved for buffering the bitmap blocks of /RD, /F0, /F1,
/H0 and /H1. The 1 kbytes typically used for each disk drive bitmap is sufficient
for an 8 megabyte volume, however /H0 typically allows for 40 megabyte.

Page -10 Programmers Programming under 1616/OS v4

EXEC file problems

There is one huge problem with this memory layout. The stack space must be
fixed and relatively small. The whole philosophy of the operating system
emphasises recursion ofexecs - the system itself performsexecs in a number of
places. The spawning of programs from within other programs tends to use up
stack space quickly, and there is no effective way of preventing stack overruns.

The obvious solution to this problem is to build allocated memoryup from $4000,
rather than down from from some point some arbitrary distance beneath the stack.
This way the heap and the stack move towards each other, and chaos comes only
when all the system’s memory is used. The only reason this has not been done is
the need to support.exec files. These load at $4000, and can be of any length.

Future releases of1616/OSwill probably not support.exec files! The allocator
will build the heap upwards towards the machine stack, and the only executable
binary file format supported by1616/OSwill be .xrel files.

Boot Sequence

The following things happen when the system is reset. Those steps marked † only
occur at level 0 resets.

• The stack pointer is initialised to $10000

• The RAM system call vector table is initialised.

• All I/O devices and major internal program modules are initialised. The 6545
CRT controller is initialised prior to using any code that requires RAM in
operation.

• A small model memory manager is installed, using the $4000 - $10000 area
as free memory.

• Default values for the RAM disk size, stack space and video RAM space are
installed.†

• A search is made on the /F0, /F1, /H0 and /H1 drives (if present) for the
MRDRIVERS file. If found, it is loaded in and new values for the RAM disk
size, stack space and video RAM space are installed. The memory resident
driver code is loaded in and relocated.†

• The stack pointer is moved to point to the area just below the MR drivers.

• Interrupts are enabled.

• A search is made from address $800000 through to $FFC000 in $4000 byte
increments for a ROM with the values $12, $B5, $06, $A7 at the start. For
each external ROM with this pattern at the start, the OS performs a JSR to
the start of the ROM + 4. A zero is passed at 4(sp) and the reset level at 8(sp).
At this point external ROMS can perform whatever initialisation is necessary
for their purposes.

 Programming under 1616/OS v4 Programmers Page -11

• The previous step is repeated, except a value of 1 is passed at 4(sp) to any
called ROM code. It is at this point that an external ROM can take control
of the system, with all of the normal system resources available.

• Every memory resident driver is called with command number 0, 1 or 2,
depending upon the reset level.

• A search is made of the /RD, /F0, /F1, /H0 and /H1 devices for a bootable
device. If one is found (BOOTBLOCK field of the root block non-zero), the
boot block is read from the device into memory at $3C00. The system then
performs a JSR to address $3C00, passing the reset level at 4(sp), and the
number of the boot device driver at 8(sp). The /RD driver is device 0, /F0 is
device 1, etc.

• The system drops into an infinite loop, performingiexec(1) system calls.

Page -12 Programmers Programming under 1616/OS v4

2
The System Calls

Broad categories
For the purposes of description the system calls are divided into the following
broad categories:

System control These functions alter the configration of the 1616 or
call general purpose internal1616/OSroutines.

File and block I/O These functions include all the control routines as
well as block device driver calls for disks.

Character I/O The character I/O functions perform input, output
and status calls on character device drivers.

Video output The video control functions include the simple calls
to change colours, etc as well as the text/graphics
window control functions.

Graphics calls The graphics functions are related to the video
functions, particularly where windows control
functions.

Multitasking Support for multitasking, pipes, signals, asynchro-
nous, and multiple user processes, with a generally
UNIX like flavour. These are described in the
Technical Reference Manual.

Hardware control There area numberof system callswhich manipulate
I/O devices, include analog and digital converters,
etc. Use these whereverpossible, rather than directly
manipulating I/O devices.

The system call mechanism

A system call is performed by putting the call number into d0 (data register zero).
Any required arguments go into d1, d2, a0, a1 and a2. Then execute the 68000
‘TRAP #7’ instruction. If the system call does not require five arguments, then
not all of these registers need be initialised. Appropriate header files are provided
for both assembler and C programmers, with an emphasis on C.

Any return value from the system call will be in d0. If the system call does not
return a value, then the contents of d0 are undefined.

All system calls preserve all registers except d0, however it is poor programming
practice to rely upon this.

 The System Calls Programmers Page -13

All parameters passed to system calls are considered to be long integers (32 bit
quantities). The returned value is also a long. MS-DOS programmers, and those
converting programs, should take care not to be caught by the difference in ints
(integer numbers are 32 bits in 68000, 16 bits in 8086).

As an example of a system call let us consider a subroutine to print out a byte in
binary, decimal, hexadecimal and ASCII format. In this example we use theprintf
system call to do the printing.
*
* Example subroutine to print out a byte
* (at ‘num’) in 4 ways.
* printf control string
*
print4 move.l #control,d1

clr.l d2
move.b num,d2 * number to print
move.l d2,a0
move.l d2,a1
move.l d2,a2 * 4 copies
move.l #48,d0 * printf syscall no.
trap #7 * do the call
rts * no meaningful return

control dc.b "bin: %b, dec: %d, hex: %x, ascii:
%c",13,10,0

Here the parameters required by the system call are loaded into the appropriate
registers, the call number is put in d0 and the trap is performed.

A ‘pointer’ to a data structure is a 32 bit number which is equal to the address of
the first element in that structure.

Since1616/OSis written in the C programming language, strings are invariably
null-terminated. This means that the end of a character string is denoted by a zero
($00) byte at the next address beyond the last character of that string.

The Line A Trap

1616/OSversions 3.0 and later support a second mechanism for performing a system
call. Although it is provided, this method should not normally be used by 1616
programs. The normal system calls should be used wherever possible.

The Line A trap system call mechanism involves pushing all the arguments to the
system call onto the stack, as longwords, in reverse order. Then execute an opcode
computed from ($A000 + system call number). It is the calling code’s responsi-
bility to adjust the stack pointer for the pushed arguments.

The Line A mechanism is mainly for internal use by1616/OS, but may be used by
other programs. Registers d0, d1, a0 and a1 are trashed. All others are preserved.
It does have the disadvantage that programs which use it will not run under earlier
versions of the OS.

The system returns from a Line A trap in supervisor mode. The normal ‘trap #7’
preserves the User/Supervisor state.

Page -14 Programmers The System Calls

The system call example presented above can be reworked to use the Line A trap
as presented below.
*
* Example subroutine to print out a byte
* (at ‘num’) in 4 ways
* using the Line A system trap
*
* printf system call number
r_printf equ 48
print4 clr.l d2

move.b num,d2 * number to print
move.l d2,-(sp)
move.l d2,-(sp)
move.l d2,-(sp)
move.l d2,-(sp) * pass it 4 times
move.l #control,d0 * printf control string
move.l d0,-(sp)
dc.w $A000+r_printf * off to the OS
add.w #20,a7 * adjust 5 longs
rts * no meaningful return

Format of the system call documentation

Due to the number of system calls and the cost of paper it is necessary to define a
brief format for describing the system calls. The general format is:

callname(arg1, arg2) Brief description
d0 call number
d1 arg1 usage of d1
d2 arg2 usage of d2
a0 arg3 usage of a0
a1 arg4 usage of a1
a2 arg5 usage of a2
Return description of returned value.

Where thecallnameis the standard name of the system call andarg1, arg2, etc.,
are the names of the arguments which the call requires. As the arguments are
passed in registers, their use is described in the lines after the call definition, along
with which register they must go in.

To make the manual clearer, syscalls are shown inbold italic, while arguments
are shown inhelvetica. Example code, and1616/OScommands, are shown in
courier .

The ‘Return’ value is a description of what (if anything) the system call returns in
d0. Many system calls return a negative number (bit 31 of d0 set) if an error of
some nature is detected. The meanings of all known error messages are listed in
Appendix B, together with their decimal and hexadecimal value. Remember there
are two syscalls (114 and 122) to interpret error messages, and theprintf syscall
will also print English versions from the error codes by using the %e option. Do
not rely upon simply testing for -1 as an error, as numerous other codes are
available. Test for a negative number.

 The System Calls Programmers Page -15

3
System Control Calls

Introduction
These are general purpose utilities, and system control calls. They includes several
levels of reset, exiting a program, interrupt and VIA routines, raw cassette routines,
time and date facilities, calculatingsines, allocating and releasing memory, various
line editor entry points, altering the keyboard scan, a quicksort, and variousexec
routines.

Reinitialise 1616/OS - coldboot

coldboot()

d0 101

Restarts1616/OSas if the system had just been turned on at the power switch (some
early versions used 0 for this syscall, but 0 is now awarmboot).

Reinitialise 1616/OS - warmboot

warmboot()

d0 1

Restarts1616/OSas if the reset button or ALT-control-R had been pressed.

Relocating loader - loadrel

loadrel(handle, addr)

d0 11

d1 handle Input file handle

d2 addr Target address

Return Error code

Loads relocatable code from the previously opened file (see syscall 105opento
open a file) whose handle ishandle. SeeTechnical Reference Manualfor details.

Load a program - floadrel

floadrel(path, memmode)

d0 69

 System Control Calls Programmers Page -17

d1 path Pointer to pathname of program

d2 memmode Memory allocation mode

Return Error code or load address.

This system call loads a program (.exec or .xrel) into memory. SeeTechnical
Reference Manualfor details.

Terminate a transient program - exit

exit(retval)

d0 13

d1 retval Program return value

Return ??

When the system has loaded a program from disk and is about to execute it, all of
the 68000 registers except D0 are saved. This includes the stack pointer. If the
loaded program performs theexit system call, the stack and other registers are
restored and the program exits. The value in D1 at the time of theexit becomes
the program’s return value, much the same as the value in D0 when a program
ends in the normal way with an RTS instruction.

This call is provided for an emergency way out of a program when an irretreivable
error is detected when theprogram is several layersdeep in subroutines. Be warned
that it will lock the system if there is no transient program from which to exit.

The exit only applies to the currently running program. If program Aexec’s
program B and program Bexits then control is returned to program A, withretval
in D0 (the normal place for a return value from a system call).

Install a vertical sync interrupt routine - set_vsvec

set_vsvec(vec, rate, callval)

d0 16

d1 vec Pointer to subroutine

d2 rate Call period (50ths of a second)

a0 callval Value passed with call

Return vector number (-1 on error)

This call installs in a table a pointer to an interrupt subroutine (ISR) which you
have written. Your routine is called at a frequency of 50/rate Hertz. Thecallval
parameter is one which you specify when installing the vector; it is passed to the
ISR each time the ISR is called.

Page -18 Programmers System Control Calls

Before your ISR is called the following long words are pushed onto the system
stack:

4(a7) Value returned in d0 from previous call to your code

8(a7) callval, specified when vector was installed

Up to 32 vertical sync interrupt routines may be installed. The system uses 6 of
these. If there are none free in the table a value of -1 is returned; otherwise the
index into the vector table is returned. This must be saved for deleting your vector
at a later stage.

Your interrupt subroutine must preserve all registers (except d0) and end with an
rts .

If this call is used by a transient program the vector must be removed before the
program returns to1616/OS. Failure to do this will result in the next transient
program overwriting still active interrupt code. Thus will probably crash the
system.

All entries in the vector table are cleared at any level of reset.

set_vsvec(1, nn, 1) (new in V4.2a) returns a pointer to a data structure that
represents the state of vertical sync vector numbernn.

Remove a vertical sync interrupt routine - clr_vsvec

clr_vsvec(vnum)

d0 17

d1 vnum Vertical sync vector table number

Return 0 or -1

Removes a vertical sync ISR vector table entry.vnum is the index returned by
set_vsec(above). Returns -1 ifvnum is bad. May be called from within a vertical
sync ISR (to remove your ISR, for example).

Get number of ticks since system startup - get_ticks

get_ticks()

d0 18

Return count

Returns the number of 50 Hertz ticks since the last level 0 reset - probably when
the 1616 was turned on.

Determine the current CPU type - get_cpu

get_cpu()

 System Control Calls Programmers Page -19

d0 19

Return 0 for 68000
1 for 68010

1616/OSsupports both the MC68000 and the MC68010 processors. This system
call is provided for programs to determine the type of CPU the system has. It
returns 0 for a plain old 68000, 1 for a 68010, and won’t return 2 for a while yet.

Unfortunately, since Andrew doesn’t normally run a 68010 (they are expensive,
and don’t run at 15 MHz), the 68010 support sometimes breaks on new releases
of 1616/OS. We recommend sticking with the 68000 at the moment.

Raw cassette block write - caswraw

caswraw(start, length, leader)

d0 21

d1 start Block start address

d2 length Block length (in bytes)

a0 leader Leader length in bytes

Return nil

Writes the specified block of memory out to tape in a single stream of data followed
by a checksum. Theleader argument is the number of $ff bytes to use for a leader;
use 800 decimal here.

The resulting output is not compatible with1616/OScassette files, however it may
be read in using thecasrrawsystem call. This can be used to test the cassette
interface.

Raw cassette block read - casrraw

casrraw(buf, leader, maxhunk)

d0 22

d1 buf Block start address

d2 leader Lock-in length

a0 maxhunk Maximum block size

Return block length (-1 on error)

Reads a raw block from the tape into memory. The lock-in length is the minimum
number of $ff bytes required for a leader lock; use 250 decimal here. Since the
size of the tape block is not known prior to reading you must specify the largest
size acceptable,maxhunk.

Page -20 Programmers System Control Calls

Returns the length of the block if sucessful, or -1 if checksum error or blocksize
> maxhunk.

Get system time date - getdate

getdate(buffer)

d0 23

d1 buffer date/time buffer

Return buffer address

Moves the current date/time to the seven byte area pointed to by buffer. The data
at (buffer) is: year, month, date, hour, minute, second, tenths of seconds. Since we
use a single byte for the year, the preceeding 19 is assumed in the year. This will
probably have to be fixed in 1999.

Set system time date - setdate

setdate(buffer)

d0 24

d1 buffer date/time buffer

Return 0 (-1 on error)

Moves the date/time in the 7 byte area pointed to bybuffer to the system time
accumulator, provided the new date/time is acceptable. Returns 0 if the new
date/time is acceptable, or -1 if an impossible date/time was supplied.

Get time/date string - gettdstr

gettdstr(buf, arg1, arg2, arg3)

d0 83

d1 buf string buffer

d2 arg1 varies

a0 arg2

a1 arg3

Return buffer address, or various

Arranges the current system date/time into the standard format:

HH:MM:SS DD MON YYYY

buf must point to a 21-byte area. The date/time string is null-terminated (ends with
ASCII 0, or null, character.)

 System Control Calls Programmers Page -21

gettdstr(0, 0, dateptr, mybuf) will convert the 8 byte time pointed to byarg2
into a human readable string form and place it at memory pointed to byarg3. In
syscalls header ascvttdstr .

gettdstr(0, 1, increment, x) sets the date/time increment toarg2. In syscalls
header assettimeinc .

gettdstr(0, 1, 0, x) returns the current value of the date/time increment. In
syscalls header isreadtimeinc .

The date/time increment is simply the number of microseconds between vertical
sync interrupts. Normally 19968 (a nominal 50th of a second), this may be varied
to trim the operation of the real time clock when different video modes are pro-
grammed.

Get ALT-C status - abortstat

abortstat()

d0 25

Return ALT-C status (0 for no ALT-C)

Try to avoid using this call. It is no longer used internally by the EPROMS. Use
signals instead, as documented in theTechnical Reference Manual. Signals
generally are compatible with their use under Unix.

Returns the state of1616/OS’s abort flag. The flag is cleared by this call before it
returns. The flag is set by an ALT-C only if the process is interactive. This means
that a background task cannot be interrupted by .

The way to use this call is to use it once before you start polling ALT-C (at the
start of your program, possibly) and discard the result; this clears the internal flag.
From this point on, a call to ‘abortstat’ returns true, if the user wants out.

Enable VIA timer1 interrupts - ent1ints

ent1ints(vec, preload)

d0 26

d1 vec pointer to user ISR code

d2 preload ISR call period

Return nil

This call sets up the timer 1 output of the VIA to produce a stream of level 4
interrupts which vector to your code, which is pointed to byvec. This mechanism
is used by the cassette write routines and thefreetonesystem call. Seeset_vsec
(syscall 16) for details of interrupt service routine (ISR) code.

The frequency at which your code is called is

Alt C

Page -22 Programmers System Control Calls

750,000 / ((2 * preload) + 3.5) Hertz.

For speed purposes there is no intervention between1616/OSand your code. The
general format of your ISR should be:
V_AREG equ $700102

org wherever
my_isr movem.l <reglst>,-(a7) * Save registers

bset #2,V_AREG * Toggle /PRE
* on U49 to clear

bclr #2,V_AREG * /CASIRQ.
| |
| | * Your code
| |
movem.l (a7)+,<reglst> * Restore
rte * Return from the ISR

The toggling of bit 2 of the VIA A port is essential. Don’t forget to disable VIA
timer interrupts when you finish with your routine.

Disable VIA timer1 interrupts - dist1ints

dist1ints()

d0 27

Return nil

Disable (halt) timer 1 interrupts. This system call may be made from within an
ISR.

Calculate a sine - sine

sine(angle)

d0 28

d1 angle Angle in the range 0 - 1023

Return sine(2*pi * (angle/1024)) * 128

This system call may be used for building look-up tables for sound generation (in
association with the timer1 interrupts, see above). It may also be used to synthesise
waveforms for use with thefreetonesystem call (below).

Theangle is taken, modulo 1024 and a value between 127 and -128 ($0000007f
and $ffffff80) is returned. A few samples:

sine(0) = 0
sine(256) = 127
sine(512) = 0
sine(768) = -127

 System Control Calls Programmers Page -23

The signed 32-bit numbers thus generated may be multiplied by scaling factors
and added together to produce musical waveforms. When the synthesised
waveform table is complete the least significant bytes should be sent out through
the DAC with bit 7 inverted. The inversion of bit 7 is needed because the peak
excursions of the DAC are $00 and $ff, not $80 and $7f.

Define a function key - def_fk

def_fk(fknum, str)

d0 29

d1 fknum Number of function key - 1

d2 str Pointer to definition

Return 0 (-1 if ‘fknum’ bad)

Programs function keyfknum+1 to produce the sequence of characters pointed to
by str when it is typed. The stringstr is null-terminated; it is copied into1616/OS’s
data areas by this system call, so the original string need not be preserved. This
is essentially identical to thefkey command detailed in the1616/OSReference
Manual.

If fknum is in the range 64-73, then a pointer to the definition of function keyfknum
- 64 is returned. This means you can easily read back function key definitions
(new in Version 4.0b).

Get random number seed - getrand

getrand()

d0 30

During character input the system increments a 32 bit number. This system call
returns the current setting of the number. This is useful for random number seeding
and disk root block randomisation.

Request storage from system - getmem

getmem(nbytes, mode)

d0 62

d1 nbytes Number of bytes required

d2 mode Storage mode

Return Start address or negative error code

Page -24 Programmers System Control Calls

There are seven supported modes to this system call, and they are 0 to 3, and 9 to
11. The informally documented ones were for test and development purposes (but
since Andrew told me about them somewhere, I’ve included 4 to 8 - I don’t know
whether you can count on them in future releases).

Mode = 0
Allocate nbytes bytes of memory, return start address (an even address, to
suit 68000 systems) or negative error code. The allocated memory is auto-
matically freed upon termination of theexecsystem call which invoked the
user program. This is the usual allocation mode. Ifnbytes is odd is it
automatically incremented by one. Ifnbytes is zero it is set to 2.

Mode = 1
As with mode 0, except the memory remains allocated after the currentexec
terminates. This permits the permanent allocation of memory. Memory
allocated withmode = 1 may be freed using thefreememsystem call. Mode
1 memory is for loading in programs which remain in memory, and for
allocating storage from within an interrupt service routine (the memory
allocator is re-entrant).

Mode = 2
The return value is the normally the size of the largest unallocated block of
memory, divided by two. This has been done to confound programs (such
as the HiTech C optimiser) which allocate all of the largest free block, which
clogs the system. Thenbytes argument is ignored.

The default divisor can be altered, usingmode = 9. If the divisor is 1, this
call is identical to its operation under Version 3.

Mode = 3
The return value is the total amount of free memory. The size of all the free
blocks is summed and returned.

Mode = 4
Returnsglbtable, a pointer to a bitmap. Bit 7 of byte 0 is set if $4000-$401f
is allocated, bit 6 is $4020-$403f, etc.

Mode = 5
Endtable, a bitmap of the length of each run ofglbtable and executables.

Mode = 6
glblongs, the number of longwords inglbtable and executables.

Mode = 7
Executables, a pointer to the start of a table of 64 pointers (one per process)
to bitmaps ofmode 0 memory use of all processes. Nil pointer to non-existant
PID.

Mode = 8
Arenatop is the address of the highest location used by the memory manager.

 System Control Calls Programmers Page -25

Mode = 9
Memcheating. Contents of D1 (default value 2, normally containingnbytes)
sets the divisor factor formode 2. If mode 9 is used with D1 containing 1,
then the nextmode 2 will return the actual number of bytes in the largest free
block.

Mode = 10
Returns the actual, real maximum free block size, irrespective of the divisor
set bymode 9.

Mode = 11
Allocates a new PID for theschedprep() call (syscall .131), provided
thenbytes argument is 0.

The memory allocation functions in1616/OSgenerally print error messages out on
standard error if something goes wrong. Memory allocation behaviour is now
configurable on a per process basis, so that a process with memory allocation
problems can be sent asigsegv (signal 11) upon segmentation violation. See the
oscontrolsyscall,cmd 25, for details.

Allocate memory at address - getfmem

getfmem(addr, nbytes, mode)

d0 63

d1 addr Desired address

d2 nbytes Amount of memory desired

a0 mode Allocation mode

Return addr (or negative error code)

This call requests allocationof thenbytes of memory ataddressaddr. If thememory
is currently free, it is reserved andaddr is returned. If some or all of the requested
block is reserved, a negative error code is returned.

Main applications of this call are for loading in non-relocatable code (the system
usesgetfmem() for .exec files), and for safely using multiple video pages. This
syscall now failsif the requested address is not on a 32-byte boundary (the syscall
formerly attempted to massage the address to a suitable value, causing problems).

Themode field is set to 0 or 1, and it has the same use as in thegetmemsystem
call.

Release allocated memory - freemem

freemem(addr)

d0 64

d1 addr Address of memory to release

Page -26 Programmers System Control Calls

Return Block size, 0 or error code

Releases (for possible reuse) the block of allocated memory which starts ataddr.
Typicallyaddr will have been obtained from a previous call togetmemorgetfmem.

If the most significant bit (bit 31) of addr is set, this system call returns the size of
the block of memory ataddr. This will be the same as the value ofnbytes which
was passed togetmemor getfmemwhen the block was allocated. The memory is
not released if bit 31 ofaddr is set. Andrew often makes use of this ‘special effect
if bit 31 set’ so watch out for it in your use of calls.

Alter/install a system call vector - setstvec

setstvec(vecnum, whereto)

d0 80

d1 vecnum Number of system call

d2 whereto System call handler entry point

Return old vector

This system call permits the alteration of how a specific system call is handled.

When a system call occurs, the system stacks d1, d2, a0, a1 and a2 and jumps to
the code pointed to by an entry in a RAM jump table, indexed by the system call
number. Thesetstvecsystem call permits the alteration of entries in this table. It
is passed the number of the system call to vary and the new entry point for the
system call handler. The return value is the old system call handler entry point.

The RAM copy of the system call jump table is reinitialised at all reset levels.

A new system call handler may expect the first argument to the system call (the
one which is originally passed in register d1) at 4(sp), the second at 8(sp), etc. The
call number is not considered to be an argument. The new system call handler
may jump off to the old system call handler after processing the arguments; stack
discipline must be maintained: push the required arguments onto the stack in
reverse order and JSR to the code which is pointed to by the address returned from
the call tosetstvec. Remember to unstack the arguments and return an appropriate
value in d0 upon completion.

If whereto is zero, the default setting of the pointer is written into the system call
jump table: this may be used to restore the system’s normal system call handlers.

If whereto is negative the current setting is read from the table but no changes are
made.

Line editor with length - nledit

nledit(str,len)

d0 84

 System Control Calls Programmers Page -27

d1 str Pointer to string to be edited

d2 len Maximum acceptable length of string

This is the same as the oldledit call except that the maximum string length is
determined bylen. The maximum value oflen is constrained to 512.

This system call is designed for those instances where a fixed length record is
required for storage in a database. Another use is where there are only a small
number of screen columns available.len refers to the maximum number of
characters, not to the maximum printable length of the string. If a typed string
contains tabs or control characters, then its printed length may exceed its actual
length. This means that a typed string could exceed desired bounds on the screen.

Line editor for dial up access - fnledit

fnledit(buf, len, in, out)

d0 142

d1 buf Pointer to space for edit buffer

d2 len Maximum acceptable length of string

a0 infd Input file handle

a1 outfd Output file handle

Return str Pointer to start of string being edited

This call is for dial up access, so that some form of line editor is available for
callers using really dumb terminals, Macintosh, IBM PC, etc., where they can’t
supply internationally accepted Applix terminal control sequences.

It is a low level call to the 1616/OS line editor. Permits the source of input and
output to be other than standard input and output. Do things like ead a line from
a user without echoing to the screen (make the output file descriptor the NULL:
device.

Some of you may wonder why this isn’t syscall .85. So did I. Syscall .85 was
used for lbedit in the dark past, even Andrew dosn’t know what it did, and it should
never again be disturbed. Syscall .85 is now badsyscall!

Line editor - ledit

ledit(str)

d0 86

d1 str Pointer to string to edit

Return str

Page -28 Programmers System Control Calls

Invokes the standard system line editorupon the null-terminated string atstr. There
must be at least 512 bytes spare atstr. If you wish to useledit for getting a new
line from the user rather than editing an existing one, put a null at the start of the
string.

The line editor returns zero if an end-of-file character (usually^D) is entered at
the start of line. Otherwise it returns a pointer to the start of the line just edited.

Indefinitely call 1616/OS command executor - iexec

iexec(prompt)

d0 87

d1 prompt Pointer to prompt string
or value

Return nil

Repetitivelycalls the lineeditor andcommand interpreteruntil theQUITcommand
(or end-of-file) is entered.

The argumentprompt points to a null-terminated string which is used as the input
prompt. When passed a a prompt string for display, the current directory name is
substituted into a ‘%s’ in the path. For example, the system call

iexec("[my name] %s")

will fire off an interactive shell with a prompt such as
[my name] /f0/mydir>>

If this string is empty (i.e.,prompt points to a zero byte) then the call returns after
editing and executing just one command line. Ifprompt equals 1 (register d1 =
$00000001) then theprompt is thecurrentdirectory,provided thishas beenenabled
with the OPTION command (option 0, referUsers Manual).

Anumberof ‘>’ charactersequal to thedepthof nestingof calls toiexecis displayed
after the prompt.

Since Version 3.2b,iexecwill return if an end-of-file character is typed in at the
start of a command line. Thus, will act the same as QUIT (provided the
EOF character is set to 4, instead of the default of 256 or no EOF).iexecwill
terminate when it receives asighup signal.

From Version 4.0b, the value passed as the first argument (in d1) will alter the
way iexecfunctions.

If prompt = 1, performsiexecuntil quit or EOF is passed. Prints an extra> in
prompt if iexecs are nested. Prompt contains current path if OPTION 0 is set.

If prompt = 2, performsiexecuntil quit, however only one> appears in prompt.
Prompt contains current path if OPTION 0 is set.

Ctrl D

 System Control Calls Programmers Page -29

If prompt = 3, performsiexecuntil quit, however only one> appears in prompt.
Prompt does not contain current path.

If prompt = 4, performsiexecas a root shell (which can cause all sorts o software
problems, since input may go to any root shell).

If prompt is 0, or a value from 5 to 32, the prompt essentially points to a null string,
andiexecexecutes once. If it exceeds 32, then it is a pointer to a memory location,
and will return the conetnts of that location as a prompt. The argument passed to
prompt will appear as a value (at the end of the line) when you do aps .

Ifbit31ofprompt isset, theshell processwhichiexecsetsup is run asynchronously.
This means that the command

syscall .87 80000002 < sa: >sa: }sa:
will start up aniexec(shell) process on serial channel A for a second user. This
is one simple example of how to let a second (or third) user into the Applix 1616.
A more convenient method is to use thegetty program, available from Applix or
the User Group.

Execute a 1616/OS command - exec

exec(str)

d0 88

d1 str Pointer to command

Return 0 (negative if error)

Interprets a1616/OScommand. The null-terminated command string may invoke
either inbuilt or transient commands. The command may include wildcards or I/O
redirections.

The normal error messages are produced if any errors are detected.

If there is any form of error detected a negative value is returned (bit 31 of d0 set).
Otherwise any non-negative value may be returned.

Before theexeccompletes it closes and restores standard input, output and error.
It then closes any files which were opened by thisexecand not closed (for Version
3, if enabled - OPTION 7,Users Manual- this option is changed in Version 4).
All memory which was allocated by thisexecis deallocated unless it was allocated
with mode set to 1 - see theTechnical Referencemanual for details.

Call a memory resident driver - callmrd

callmrd(mrdno, cmd, arg)

d0 89

d1 mrdno Driver number or name

d2 cmd Command to driver

Page -30 Programmers System Control Calls

a0 arg Argument passed to driver.

Return Value from MRD, -1 if bad mrdno

Calls memory resident numbermrdno by stackingarg at 8(sp) andcmd at 4(sp)
and calling the MRD’s start address. See the MRD documentation in theTechnical
Reference Manualfor more details.

If mrdno = -1 then the return value is a pointer to the following internal data
structure. Note that a lot of the fields in this structure are read from themrdrivers
file at boot time. If nomrdrivers file was found they default, as described in the
MR drivers documentation.

long magic1 Magic number, always $601a
which is actually BRA.S *+28

long vers 1616/OS version of MRDRIVERS
long rdsize Size of RAM disk in kbytes 200 default
long memusage Total length of all MRDs in memory
long ndrivers Number of MRDs in memory
long magic2 2nd magic number, $d80ab7f1
long stackspace Size of system stack $10000 default
long vramspace Size of VRAM space $8000 default
long obramstart Start address of the 512k

of on-board RAM
long mrdstart Address of the header of the

first MRD in memory
long rdstart Address of block 0 of the RAM disk
long bitmaps Address of the 7k of buffers for the

bitmaps of /RD, /F0, /F1, /H0 /H1
long vramstart Address of the start of video RAM
long colours Screen colours
short nlastlines Last line recall depth line editor
short ncacheblocks
ushort maxfiles Max number of file control blocks
ushort ndcentries Number of dir cache entries
long chardrivers Pointer to 16 chardriver structs

{28 shorts, for future expansion}

Alter keyboard scan code vector - set_kvec

set_kvec(vec)

d0 90

d1 vec Pointer to key scan interpreter.

Return Previous vector

 System Control Calls Programmers Page -31

The 1616 keyboard is interrupt driven. Each time the keyboard transmits a scan
code an interrupt is generated and an ISR is called. You may supply your own
ISR to interpret keyboard commands using this system call.vec points to your
code.

Each time a key is pressed or released the keyscan code is pushed onto the stack,
accessible at 4(a7) and your code is called. See the IBM keyboard documentation
for the keyboard scan codes. Note that the existing keyboard driver (from V3.2b
on) ignores $e0 and $e1 characters from keyboards with strange extensions.

If this system call is performed with avec argument of 0 then the default1616/OS
scan code interpreter is installed. This interpreter is reinstalled at all levels of reset.

If vec is 1, the keyboard scan is set to raw mode. All scan code interpretation is
turned off, so calls togetchar()or read(), etc will return raw key codes. This will
really stuff up programs likevcon or mgr that expect ASCII codes. If you do use
this raw mode, set thecon: device into raw mode also, to avoid problems with
codes corresponding to xon, xoff, eof, reset, etc.

If vec is 2, clear keyboard raw mode state, return to previous state.

If vec is 3, read the current raw mode state.

This system call returns the previous contents of the keyscan interrupt vector, so
your code can pass the scan code on to the old interpreter if desired. This discipline
permits any number of memory resident programs to inspect the keyboard stream.
This previous vector is tricky. It points to a pointer to the code, not directly to the
code.

Interpret and evaluate arguments - clparse

clparse(pargs, ptype, pval)

d0 91

d1 pargs Pointer to array of pointers to strings

d2 ptype Pointer to array of ‘type’ bytes

a0 pval Pointer to array of evaluated numbers

Return Nil

This is an internal function which is used during the processing of commands in
exec. It takes as input an array of pointers to strings, which is pointed to bypargs.
The last pointer in the array must be a nil pointer (value zero). The strings are null
terminated, and would not normally contain white space. See theTechnical
Reference Manualfor additional details. See also the description of command line
transient arguments in Chapter One of this manual.

Page -32 Programmers System Control Calls

Sort things in memory - qsort

qsort(base, nel, width, compar)

d0 92

d1 base Table start address

d2 nel Number of elements in table

a0 width Size of each element in bytes

a1 compar Pointer to comparison function

Return nil

This is a general implementation of the non-recursive Quicksort algoritm. The
algorithm sorts an array of elements pointed to bybase. This is a very general
function which may be used to sort practically any form of data.

nel is set to the number of elements in the array.

width is the size in bytes of each element in the array.

compar is the address of a user-supplied comparison function. The function is
called byqsort to determine which of two elements is considered the ‘least’ for
sorting purposes. The user-supplied comparison function is passed two pointers
at 4(sp) and 8(sp). It must return a number less than zero (bit 31 of d0 set) if the
element pointed to by 4(sp) is considered to be less than that pointed to by 8(sp).
It must return 0 (zero) if the two elements are equal. It must return a number
greater than zero (bit 31 of d0 clear) if the element pointed to by 8(sp) is the least
of the two.

Process command strings - sliceargs

sliceargs(str, argv, wcexp)

d0 93

d1 str Pointer to string to process

d2 argv Pointer to array of 256 pointers

a0 wcexp Flag can expand wildcards

Return Number of arguments or error code

This is an internal1616/OSfunction which could be handy and so has been made
public. In particular it gives user programs a relatively simple way of expanding
wildcard representations of pathnames into multiple pathnames.

sliceargstakes as input a string consisting of words separated by whitespace (such
as a command typed into1616/OS). The separate words within the string are peeled
off and stored in memory. Space for them is obtained with thegetmemsystem
call, with mode = 0. Longword pointers to the separated words are placed in the

 System Control Calls Programmers Page -33

argv array. The return value is the number of words separated. A nil-pointer is
put in theargv array to indicate the end of the valid arguments. See the full
description in theTechnical Reference Manual.

Find CPU clock speed - cpuspeed

cpuspeed

d0 94

Return 0 for 7.5 MHz
1 for 15 MHz

If the system clock is running at 7.5 MHz, this call returns zero. If the system is
running at 15 MHz, then a 1 should be returned. Unfortunately, this got changed
to an 8 long ago, and Andrew can’t recall why (except he does say he had a good
reason).

Execute argument array - execa

execa(argv)

d0 97

d1 argv Pointer to pointers to arguments

Return Return value from the execution of the command

This is a lower-level way of executing a system command. The register d1 contains
a pointer to a table of pointers to null-terminated strings. The first string is the
name of the command (inbuilt command, transient program or executable memory
resident driver) to be executed. The second string is the first argument to be passed
to the command, etc. The table of pointers is terminated by a zero (nil) pointer.
Wildcards in the passed strings are not expanded. Only one command may be
executed (the "!" command separator is not understood at this level).

Theexecasystem call is the lowest levelexeccommand.iexec, execandexecv
all call execato do the real work. See the section on Multitasking in theTechnical
Reference Manual, for details of theaexecaasynchronous and upgraded version
of this call.

Example: A program fragment which uses the 1616 assembler to assemble the
file ‘test.s’.

Page -34 Programmers System Control Calls

move.l #asmname,argvbuf
move.l #testname,argvbuf+4
clr.l argvbuf+8 * Terminal nil pointer
move.l #argvbuf,d1
move.l #97,d0
trap #7 * Do the assembly
tst.l d0 * Error?
bmi errorhandler

asmname dc.b ’SSASM’,0
testname dc.b ’TEST.S’,0
argbuf ds.l 10 * Pointer array

Execute command with arguments - execv

execv(path, args)

d0 98

d1 path Pointer to null-terminated
command name

d2 args Pointer to table of pointers
to arguments

Return Return value from command execution

This is very similar to theexecacall. path points to the command or program to
be run,args points to a table of pointers to null-terminated strings which become
the arguments to the command at path when it is run. Again, theargs array is
terminated by a nil pointer after the last argument pointer.

Set/read a system option setting - option

option(opnum, setting)

d0 99

d1 opnum Option number

d2 setting Option setting

Return Old option setting

This system call is very similar to the1616/OSinbuilt command OPTION. The
argumentsopnum andsetting behave in the same manner as the options to the
OPTION command.

This call returns the previous setting of the selected option.

If bit 31 of opnum is set then the currentsetting is read, but no change is made.

If opnum is outside the valid range of options, a negative error code is returned.

 System Control Calls Programmers Page -35

Error number interpreter - errmes

errmes(ec)

d0 122

d1 ec 1616/OSerror number

Return Pointer to human-readable string

This system call is similar to theinterpbeccall (syscall 114). It takes a1616/OS
error number (negative) and returns a pointer to a null-terminated string (within
the ROMs) which is the appropriate human-readable message. Ifec is not a known
error message, the string ‘Unknown error’ is returned. Ifec is not negative the
string ‘No error’ is returned. Theprintf , fprintf , andsprintf system calls can now
directly produce error messages using the #e output variable, so you do not need
to useerrmesas often.

Return 1616/OS version - getromver

getromver()

d0 126

Return 1616/OSversion number

Returnsa byte ind0 which indicates theversionnumber of theROM. Theoperating
system versions will be of the form X.Y, where X and Y are decimal numbers
between 0 and 15. On return from this system call bits 0-3 of d0 contain Y and
bits 4-7 contain X.

You should use this system call to determine whether your transient program is
running under a suitable version of1616/OS.

Page -36 Programmers System Control Calls

4
File and Block I/O Calls

The file I/O system calls allow transient programs to manipulate disk files and
character devices.

Introduction
The file I/O system is designed to work transparently upon disk files and character
devices(suchasSA:andCENT:). Thismeans thatcharacterdevicescanbeopened,
closed, read from, written to and so on. For this reason we introduce the term
stream. A stream is a source of input and/or destination of output which may be
an open file or a character device.

Each stream is identified by ahandle, which is a number in the range 0 to 31.
Character devices have handles in the range 0 to 15; open files have handles in the
range 16 to 31. Handles are used to reference a stream for I/O operations and
manipulations. The character devices are con: (0), sa: (1), sb: (2), cent: (3) and
null: (4).

Earlier versions of1616/OSrequired 16 to be added to file handles before they could
be used in thegetc, putc,sgetcandsputcsystem calls. This is no longer necessary,
and the system now subtracts 16 from file descriptors which are in the range 32-47,
so programs written under1616/OSversion 2 which use this kludge will still work.

The file I/O system calls work transparently when the name of a character device
(ending in a colon) is used in place of a file pathname.

All of the disk/block device system calls return error codes in d0 if an error is
detected. An error code is a negative 32 bit number (bit 31 set). There are a range
of error codes implemented; call usinginterpbecor errmessystem calls, or the
%e option inprintf and similar routines. The errors are listed in Appendix B, and
can be displayed with syscall .122, .114 or the %e option on theprintf and similar
print routines.

A maximum of about 230 files may be open simultaneously. Each file redirection
uses one of the sixteen file control blocks. Each currently open shell file uses one
also, so don’t open too many windows.

Files currently have no size limit. The previous 512k limit has been avoided by
ensuring that the blockmap for a file extends across contiguous blocks, one block
per half megabyte. This means that every time the system grows a file across a
0.5 Mbyte multiple, itmust relocate the entire blockmap. If there is nowhere to
put the blockmap, a "disk full" error results. Incidently, older versions offscheck ,
the file system checking program, do not understand files longer than 0.5 Mbyte.
Be warned.

 File and Block I/O Calls Programmers Page -37

The ‘working position’ in a file, or the ‘current file pointer’ refers to the position
within the file (relative to the start) where the next read/write will occur. The
pointer is automatically advanced by reads and writes. The first byte in the file is
positioned zero bytes relative to the start, so to read it would require a working
position of zero. There is a nasty, but rare, ‘gotcha’ associated with this, but I’ve
forgotten the details.

File control block
Each file has a file control block structure associated with it. This consists of the
following:

file_name char The full pathname
openmode ushort Mode in which file was opened
bdvrnum ushort Appropriate driver number
blkmap ushort Pointer to file’s block map
bmindex ushort Current index into blkmap[]
blkbuf char Pointer to buffer for disk I/O
dirblk ushort File’s directory entry block
dirindex ushort Position in directory block
file_size uint Accumulated length
file_pos uint Where we are in it
blkmapblk ushort Where file’s block map starts on disk
changed ushort Flag. Current block must be written out
blkstat ushort Flag 0. Block must be read
nusers ushort Number of processes using file
owners[maxpids] char PIDs who own or have inherited it
pipefcb struct If non-zero, it is a pipe
uid ushort UID the file will get
needsflush ushort Altered since last close (80000000 | fd)

Standard input, output and error
When a program is running, it does not know (or need to know), which physical
device its output is actually going to. The output of the program is instead sent to
‘standard output’, which is an output stream which the operating system manages.
The handle for standard output is always $101 (257 decimal) or $81, regardless
of what physical device is currently handling output. The user may redirect the
physical device to which the operating system sends standard output with redi-
rection commands (>filename or >device:).

Similarly, standard input is a character stream which the operating system trans-
lates into the currently assigned input device. The handle for standard input is
always $102 (258 decimal) or $82, regardless of the currently assigned source of
input. The user may vary a program’s source of standard input, for the duration
of the program’s execution, by using the ‘<filename ’ or ‘ <device: ’ redirections
when invoking the program. As an alternative, you can alter the standard input or
output devices with theset_sip, andset_sopsystem calls.

Page -38 Programmers File and Block I/O Calls

As an added convenience, a third stream, ‘standard error’, is implemented. This
stream has a handle of $100 (256 decimal) or $80. This stream is provided for
outputting error messages. The user can redirect the destination of standard error
using the ‘}filename ’ and ‘}device: ’ redirections. This permits the separation
of a program’s normal output from its error messages from the command line.
This can also be redirected by using theset_sersystem call.

Either value ($10x or $8x) will work. The versions with the eighth bit set were
added because HiTech C does not handle file descriptors exceeding $ff with any
grace (it expects uchar).

File system interlock
Much of1616/OSis now re-entrant to support multitasking, so a routine within the
EPROMS can be used simultaneously by two or more processes without becoming
confused. The exception to this is the file system. Since it may be impossible to
write a re-entrant file system,1616/OSVersion 4 uses an interlock which ensures
that only one process at a time is within the file system.

When a process starts to use the file system, it is ‘locked in’ until it reaches the
stage of actually performing physical I/O. At this time, the lock is released, and
other processes may be scheduled. If any of these processes attempt to use the
file system, they are put to sleep until the process which is currently using the file
system has finished its I/O, and terminated whichever file system call it was using.

The net effect of this is to serialise access to the file system: only one process can
use it at a time. Access is granted on a first-come, first-served basis. There is
minimal interference to processes (such asedit) which have little use of the file
system.

If a file is being written-to (say as a log file) by a background process, it is possible
for another process to read from the same file. Theopensystem call has provision
for this.

File and block I/O calls
Set out below are all the actual system calls for the file system. As you would
expect, many correspond rather directly with the normal command line operations
with which you should already be familiar.

Change current directory - chdir

chdir(path)

d0 65

d1 path Pointer to new pathname

Return Error code or current path

 File and Block I/O Calls Programmers Page -39

This is very similar to theCD inbuilt command.path may be a relative pathname.
The system changes to the new directory and reads it into the current directory
cache. The return value is zero or a negative error code.

If path is zero (a nil pointer) then the current directory is not changed and a pointer
to the full pathname of the current directory is returned. Use this if a process needs
to change its own current directory; do not allow a process to useproccntl cwd
upon itself.

Make a new directory - mkdir

mkdir(path, ndirblks)

d0 66

d1 path pathname or directory to create

d2 ndirblks

Return Error code or 0

Creates a new directory as specified bypath, which may be an absolute or relative
pathname.ndirblks is the number of 1024 byte blocks which the directory is to
occupy. Note that this differs from the size specification in earlier versions of the
mkdir inbuilt command.

The system searches forndirblks contiguous free blocks on the selected device and
locates the directory there. It is for this reason possible that a directory may not
fit on a nearly full, fragmented disk which would appear to have room for it.

If the free blocks are found they are reserved, the directory is initialised and the
links to it from its parent directory are created.

Expand out a pathname - getfullpath

getfullpath(path, memmode)

d0 67

d1 path Pointer to pathname

d2 memmode Memory allocation mode

Return Pointer to full path

This system call takes the full or relative pathname atpath, converts it into a full
path, and returns a pointer to the full path. The memory in which to store the
resulting full pathname is obtained fromgetmem. Thememmode argument here
is passed on togetmem, hence it defines whether or not the memory in which
getfullpath places its output is released on termination of the currently running
program.

Page -40 Programmers File and Block I/O Calls

Your program should free the memory which was allocated bygetfullpathwhen
it has finished with it. This is done by passing the address whichgetfullpath
returned on tofreemem. This is not required as often, with removal of the old
volumes facility.

Compare pathnames - pathcmp

pathcmp(path1, path2)

d0 68

d1 path1 Pointer to null-terminated pathname

d2 path2 Pointer to null-terminated pathname

Return Zero if same file

Under1616/OSblock devices may be referred to by their physical identifier, such
as /F0. Thepathcmpsystem call gives access to an internal function which
compares two1616/OSpathnames and returns zero if they refer to the same file.
The filenames may be relative to the current directory, or absolute.

Install a block device driver - inst_bdvr

inst_bdvr(br, bw, bs, name, pv)

d0 100

d1 br Block read entry point

d2 bw Block write entry point

a0 bs Block device status entry point

a1 name Pointer to name of block driver

a2 pv Pointer to bit map buffer

Return Driver number (negative if installation error)

See theTechnical Reference Manualfor details.

Locate a block device driver - find_bdvr

find_bdvr(name)

d0 102

d1 name Pointer to block device name
or -1 or 0 to 4

Return varies

See theTechnical Reference Manualfor details.

 File and Block I/O Calls Programmers Page -41

Raw block read - blkread

blkread(blk, buf, dev)

d0 103

d1 blk Number of block to be read

d2 buf Memory address for transfer

a0 dev Block device driver index

Return 0 (or error code)

This call reads the selected 1024 byte block from the nominated device driver to
main memory starting atbuf. If an error occurs the error code is returned. The
device driver numbers are /RD (0), /F0 (1), /F1 (2), /H0 (3), /H1 (4). Between this
and the monitor commands, you can do a fair job of investigating most low level
file characteristics.

Raw block write - blkwrite

blkwrite(blk, buf, dev)

d0 104

d1 blk Number of block to be written

d2 buf Memory address for transfer

a0 dev Block device driver index

Return 0 (or error code)

This call writes a 1024 byte block from memory atbuf onto the selected block on
the nominated device driver. If an error occurs, the error code is returned.

Create for output - creat

creat(pathname, stat, addr)

d0 108

d1 pathname Pointer to null-terminated pathname

d2 type Status bits

a0 addr File load address

Return Stream handle

Creates a new file, the name of which is pointed to bypathname. Thestat or type
field sets the file’s attribute bits, as described in the documentation for the1616/OS

Page -42 Programmers File and Block I/O Calls

filemode command. The load addressaddr is that at which the program is
executable; transient.exec programs load at this address. Make the load address
field zero for files which are not.exec files.

If pathname points to an identifier for a character device (the last character being
a colon) this system call returns thehandle of that device. This may be treated in
the same manner as a file handle, so character devices and files may be treated
identically.

If the named file already exists it is deleted by this command, together with its
status bits.

The file is prepared for output.Seeks andreads are permitted.

The command returns a file or character devicehandle.

Prepare for input - open

open(pathname, mode)

d0 105

d1 pathname Pointer to null-terminated pathname

d2 mode Open mode

Return handle (or error code)

Prepares a file or character device for I/O, depending upon mode.

mode = 1 o_rdonly.
Read only. Writes fail. File pointer points to start of file.

mode = 2 o_wronly.

mode = 2 o_append (formerly namedo_wronly)
Append, read and write, same as mode 2.Writes andseeks allowed. Files open
for writing are always also open for reading. Note that the file pointer points to
theend of file.

mode = 3 o_rdwr
Read and write. File pointer points to start of file.

mode = 4 o_truncate
Truncate a file. File size if reduced to 0, opened in R/W mode, with file pointer
at start (which is also end of file). This mode was added in Version 4.2 because
creat()needed to use it when a file being created already exists. Makescreatmore
efficient, and simplifies the preservation of the file attributes and permissions.

You can open for reading a file that is already currently open for writing. This
permits the inspection of files which are being written to by ongoing background
processes.

 File and Block I/O Calls Programmers Page -43

If the openfails then an error code which is negative (bit 31 set) is returned. Use
errmesor interpbecto interpret the code.

Successfulopens return ahandle (a 32 bit integer) which is used for identifying
the output stream for the rest of the time that it is open.

If pathname refers to a character device then ahandle is returned which may be
used to read and write that device.

The o_truncate was added because there was no convenient way to return per-
mission bits of a file otherwise. There should be a fileopenmode.d that discusses
this.

Read from a stream - read

read(handle, buf, nbytes)

d0 106

d1 handle file descriptor fromopen

d2 buf pointer to transfer area

a0 nbytes number of bytes to read

Return Number of bytes read or error code

Readsnbytes bytes from the file or character device described byhandle to memory
at buf. The call attempts to transfernbytes bytes, however if there are less than
this number of bytes left in the file or if an end-of-file character is received by a
character device then a smaller number will be transferred. A zero is returned at
the end of a file. The file pointer is advanced by the number of bytes read. If an
error is detected a negative error code is returned. See theset_kvec()syscall if
you require raw scan codes input.

Write to a stream - write

write(handle, buf, nbytes)

d0 109

d1 handle stream handle fromopen/creat

d2 buf pointer to transfer area

a0 nbytes number of bytes to write

Return 0 (negative code on error)

Writesnbytes bytes from memory atbuf to the file or character device described
by handle. The file pointer is advanced bynbytes. A negative return is an error
code.

Page -44 Programmers File and Block I/O Calls

Close a disk file - close

close(handle)

d0 107

d1 handle file handle fromopen/creat

Return 0 (negative code on error)

Flushes buffers if the file described byhandle is open for output. Frees file buffers.
Returns negative value on error.

If handle refers to a character device no action occurs and a zero is returned.

If handle is -1, it syncs the file system. All files open for writing are flushed out,
but remain open so that concurrent reads may continue.

If the file descriptorhandle has its top bit (bit 31) set to 1, the file associated with
the descriptorhandle is flushed to disk. The directory entry is updated, so that
other processes can open and read the file. It remains open for writing. The
blockmap is not written out when closing files of zero length.

This action is provided in Version 4 so that background processes that log to a file
can flush the file each time they write something to it. All the process need do is
close(handle | 0x80000000) each time something is written.

If handle is made greater than 127, and the top bit is not set,closereturns zero.
This prevents any attempt to close STDOUT, STDERR or STDIN, ensuring they
will stay open acrossexecs.

Delete a disk file or directory - unlink

unlink(pathname)

d0 110

d1 pathname pointer to filename

Return 0 (negative code on error)

Deletes the file or directory whose null-terminated name is pointed to bypathname.
If the reference is to a directory it is only successfully deleted if the directory is
empty and does not lie in the path of the current directory.

Rename a disk file - rename

rename(oldpath, newname)

d0 111

d1 oldpath pointer to current pathname

d2 newname pointer to desired filename

 File and Block I/O Calls Programmers Page -45

Return 0 (negative code on error)

Changes the name of the file or directory whose null-terminated pathname is
pointed to byoldpath to that pointed to bynewname.

Get the status of a disk file/directory - filestat

filestat(pathname, buf)

d0 112

d1 pathname pointer to file/directory pathname

d2 buf pointer to 64 byte buffer area

Return varies

This system call scans the disk directory and the file control blocks for the entry
of the file/directory whose name is pointed to bypathname. If found the directory
entry is read to the area pointed to bybuf and a code is returned.

If passed a number in the range 0-31, in place ofpathname (d1), it returns a pointer
to an output driver (if in the range 0-15), or to a file control block (if in the range
16-31). These numbers correspond to the handles returned from theopenand
creatsystem calls. This can be used to obtain the name of a file or character device
from its handle.

Unfortunately, for obscure historical reasons the two are different. The character
device driver consists of three longwords (12 bytes) followed by a 16 char
null-terminated name. The data file structure is a POINTER to the null-terminated
absolute (complete) pathname of the file (see the header filefiles.h for the gory
details).

The structure of a directory entry is described in theTechnical Reference Manual.

Return codes

0 File present, closed

1 File present, currently open for reading (mode 1)

2 File present, currently open for writing (mode 2)

other Negative error code (-17 for file not there), or may return modes 3
or 4 for some file modes.

Sequentially read disk directory - readdir

readdir(dev, buf, dp, pos, pd)

d0 113

d1 dev block driver number
(obtained fromfind_bdvr)

Page -46 Programmers File and Block I/O Calls

d2 buf pointer to block work area

a0 dp pointer to 64 byte directory entry

a1 pos position within directory

a2 pd pointer to parent directory entry

Return new position (or negative error code)

This call permits sequential disk directory scanning.dev is the block device driver
number returned from thefind_bdvr system call;buf is a pointer to a 1024 byte
block buffer which must remain unaltered throughout the directory scanning;dp
is a pointer to a 64 byte directory buffer area;pos is the last value returned by
readdir, or 0 on the first call.

A new addition to this call ispd, a pointer to the parent directory entry for this
directory. This must be provided forprocessdirto find the desired directory. The
parent directory entry may be read into memory with afilestat on the directory
pathname.

To use this call, set up the data structures and callreaddirwith pos = 0. The call
returns a number which must be saved and used aspos on the next call toreaddir.
Eventually -1 is returned at the end of the directory. Each call reads a directory
entry to the memory pointed to bydp. Unused (free) directory entries (first byte
of filename = 0) are skipped.

An easier method may be to use therdalldir syscall to get a complete directory.

Read all directory entries - rdalldir

rdalldir (path, memmode, sortmode, psize)

d0 124

d1 path pointer to null teminated pathname

d2 memmode memory mode, as pergetmem

a0 sortmode directory sort mode

a1 psize pointer to longword

Return pointer to memory buffer, or error

Reads a complete directory into memory, for further manipulation. Enter the call
with a d1 containing a pointer to a null terminated string containing the pathname.
The memory mode (d2) is passed as an argument togetmem, and would normally
be 0 for memory that is not retained, and 1 for memory to be retained after
termination of the currentexec. The directory sort mode (a0) is 0 for no sorting,
1 for sorted by date, 2 for sorted alphabetically by file name, same as inoption
2.

 File and Block I/O Calls Programmers Page -47

Thepsize argument in a1 points to a longword within the calling program’s data
areas. This longword is altered by therdalldir syscall to reflect the number of 64
byte directory entries which were read from disk. That is, the amount of memory
allocated is 64 times the contents of the longword pointed to bypsize. If you get
an error code returned, then this result is meaningless.

The call returns a pointer to the memory allocated for the complete directory. You
can inspect it with the memory manipulation commands, or use it in your programs.
This call even reads empty entries, so your code should check for and skip over
empty directory entries. An empty entry has a zero as the first byte of the file
name. The caller must free this memory after use; simply pass the address to
freemem.

Interpret a block device error code - interpbec

interpbec (ec, buf)

d0 114

d1 ec error code

d2 buf pointer to 50 byte buffer

Return buf

This system call interprets the block and file error codes.ec is the negative error
code produced by a previous file/block call.buf points to a 50-byte buffer where
a null-terminated error message string for the particular error code is assembled.

The easiest way to produce readable error messages is to use the %e parameter on
theprintf syscall, which will take an error number and print out the appropriate
error message. See alsoerrmes.

The error codes implemented in1616/OSare listed in Appendix B.

Seek to a new disk file position - seek

seek(handle, offset, mode)

d0 115

d1 handle file handle

d2 offset where to seek to

a0 mode seek mode

Return new file pointer position (or negative error code)

Moves the file pointer to a different position. This may be done on files which
are open for reading only (mode 1) and those which are open for reading and
writing (listed as mode 2, but I thought it was mode 3).

A seekon a character device returns zero.

Page -48 Programmers File and Block I/O Calls

There are threeseekmodes:

mode = 0
Absolute seek. Treatoffset as an absolute position and seek to it.

mode = 1
Relative seek. Seek to current position +offset; may seek forwards
or backwards (offset negative).

mode = 2
Seek to end of file (for appending)
(On a clear disk you can seek forever).

The results of this call may now differ, since there now appear to be additional
modes toopen.

Return current disk file position - tell

tell(handle)

d0 116

d1 handle file handle

Return current file position pointer (or negative error code)

Gives the current working position in the file, relative to the start. Returns zero
if handle refers to a character device.

Call block driver miscellaneous function - bdmisc

bdmisc(bdnum, code, arg1)

d0 117

d1 bdnum or bdvrnum block driver number

d2 code type of miscellaneous call

a0 arg1 additional information

Return result of call

This system call is documented in theTechnical Reference Manual.

Manipulate directories - processdir

processdir(pathname, buf, mode)

d0 118

d1 pathname Pointer to name of file/directory

d2 buf Various, mainly as pointer

 File and Block I/O Calls Programmers Page -49

a0 mode Process mode

Return Negative error code or directory position.

The low level internal directory manipulation function. Avoid using, where
possible. Documented inTechnical Reference Manual.

Multiblock I/O - multiblkio

multiblkio(drv, cmd, addr, blockspec, nblocks)

d0 119
d1 drv Block device number
d2 cmd Function
a0 addr Read/write address
a1 blockspec Start block number OR pointer to block
list
a2 nblocks Number of blocks to read/write

SeeTechnical Reference Manualfor full details.

Symbolic links

Reserved for Jeremy Fitzhardinge’s symbolic links code.

d0 134

This will be documented in theTechnical Reference Manual.

Check permissions - chkperm

chkperm(pdirent, mask, fullpath)

d0 141

d1 pdirent Pointer to directory entry

d2 mask Access mode

a0 fullpath name of file being accessed

Return bec_noperm or 0

This system call checks that the current user is permitted to access the file or
directory described infullpath. A copy of the file’s directory entry is pointed to by
pdirent. This routine has been made a syscall so that more extensive permission
checking may be done, based upon the full pathname. See theTechnical Reference
Manualfor full details.

Page -50 Programmers File and Block I/O Calls

5
Character I/O Calls

Introduction
1616/OSV4.0 supports up to 16 character device drivers. As mentioned in the
introduction to section 4 of theProgrammer’s Manual, character devices may be
operated upon as if they are files. Conversely, files may be operated upon as if
they are character devices which supply one character at a time.

Again, character devices and files are streams which are represented by a stream
handle, a number in the range 0 to 15 for character devices and between 16 and
31 for open files.

The special handles for standard input ($102 or $82), standard output ($101 or
$81) and standard error ($100 or $80) may be used with the character I/O system
calls. The $8x values were added because HiTech C does not expect a 9th bit here.

The end-of-file character formerly had no effect upon the character I/O system
calls (particularlygetc). All characters came through literally, and user programs
had to check for end-of-file if desired. Since EOF char support was added (V3.2),
getcharandgetcreturnavalueof -18(readpastEOF)whenanend-of-filecharacter
is typed in.

Character device drivers are cleared and reinstalled upon all levels of reset,
however the EOF character is preserved on the CON: device.

Read one character from standard input - getchar

getchar()

d0 2

Return character (or negative error code)

This is the standard character input entry point. It supports all redirection (device
file) so that transient programs which usegetcharfor user input will support all
the standard1616/OSredirection features.

A long word is returned. If it is negative then it is an error code from a file I/O
error encountered during file I/O redirection.

If during file redirection, an end-of-file is detected on the input source, then the
read-past-eof error code (-18) is returned. On the next call togetcharthe source
of standard input reverts to that which prevailed before the redirection (probably
the keyboard). Seeset_kvec()syscall for details of keyboard raw input modes.

 Character I/O Calls Programmers Page -51

Get status of standard input device - sgetchar

sgetchar()

d0 3

Return status

Returns thestatus of the standard inputdevice. If anycharacters havebeen received
from the device this call returns non-zero.

If standard input is a file redirection the a value of 1 is returned.

If standard input is a device then the number of characters received into that
device’s input buffer is returned.

For generality it is best to simply test the return value for equality with zero, rather
than using the number of buffered chars.

Put a character to standard output - putchar

putchar(ch)

d0 4

d1 ch character for output

Return 0 (or error code)

Sends a character to standard output, supports all redirection, ALT-S command.
Returns a negative error code if something goes wrong, particularly if output is a
file redirection.

Get status of standard output device - sputchar

sputchar()

d0 5

Return output device status

If the output is a character device, this call returns the number of bytes which can
be sent before the device’s output buffer fills. If output is a file, 1 is returned.

It is best to simply test the result of this call for equality with zero.

Get a character from a stream - getc

getc(handle)

d0 6

d1 handle character device or file handle

Page -52 Programmers Character I/O Calls

Return character or negative error code.

Gets a character from the specified stream.handle is the return value from an
open,creator find_driversystem call. It may refer to a file or to a character device.

If an error is detected during input (particularly from a file) a negative code is
returned. Returns a value of -18 (read past EOF) when an end-of-file character is
typed in.

If handle equals$102or $82 thecharacter is read fromthe currentsourceofstandard
input, likegetchar.

Get status of an input stream - sgetc

sgetc(handle)

d0 7

d1 handle character device or file handle

Return status

Returns thestatus of the input stream (character or file) identified byhandle. If
handle equals $102 or $82 thestatus of standard input is returned. Seesgetchar
for details about the return value.

Put a character to an output stream - putc

putc(handle, ch)

d0 8

d1 handle character device or file handle

d2 ch character to send

Return error code (if file stream)

Puts a character out to the stream identified byhandle. For file output an error
code may be returned.

Get status of an output stream - sputc

sputc(handle)

d0 9

d1 handle character device or file handle

Return status of output stream

Returns non-zero if the stream identified byhandle can accept at least one more
character. Ifhandle refers to a character device then zero is returned if there is no
more room in the output queue. Ifhandle refers to a file then a value of 1 is returned.

 Character I/O Calls Programmers Page -53

Assign standard input - set_sip

set_sip(handle)

d0 14

d1 handle character driver or file handle

Return previous standard input stream handle

Sets the source of standard input to the stream identified byhandle. This may be
a file or character device. This is a permanent change. All calls togetcharor
sgetcharor getc($102 or $82) orsgetc($102 or $82) are affected by this.

The current setting of standard input may be read by passinghandle equal to -1.
The setting of standard input is unchanged in this case.

Assign standard output - set_sop

set_sop(handle)

d0 15

d1 handle character device or file handle

Return previous standard output stream handle

Sets the destination of standard output to the stream identified byhandle. This
may be a file or character device. This is a permanent change. All calls toputchar
or sputcharor putc($101 or $81) orsputc($101 or $81) are affected by this.

The current setting of standard output may be read by passinghandle equal to -1.
The setting of standard output is unchanged in this case.

Assign standard error - set_ser

set_ser(handle)

d0 20

d1 handle character device or file handle

Return previous standard error stream handle

Sets the destination of standard error to the stream identified byhandle. This may
be a file or character device. This is a permanent change. All calls toputc($100
or $80) orsputc($100 or $80) are affected by this.

The current setting of standard output may be read by passinghandle equal to -1.
The setting of standard output is unchanged in this case.

Page -54 Programmers Character I/O Calls

Theset_sip, set_sopandset_sersystem calls will accept the specialhandles for
standard input, output and error ($102 or $82, $101 or $81 and $100 or $80). For
example,set_sop($100 or $80) will set standard output to the same device which
is currently handling standard error.

Locate a character device driver - find_driver

find_driver(ioro, name)

d0 95

d1 ioro not used

d2 name pointer to null terminated
device driver name

Return device handle, or pointer to
chardriver structure or error code

If name is less than 16, returns a pointer to the chardriver structure for the corre-
sponding character device driver. Otherwisename is assumed to be a pointer to
a string such as CON:, and a search is performed for that character device driver.
If found, its handle is returned, otherwise a negative error code is returned. This
syscall was extensively reworked as at Version 4.2a.

The following device drivers are installed in the 1616 at power-on time:

Input drivers:

Device Character Physical port
name device number

CON: 0 1616 keyboard

SA: 1 Serial channel A

SB: 2 Serial channel B

NULL: 4 Null device (throw away)

TTY: A pseudo device

Output drivers:

Device Character Physical port
name device number

CON: 0 1616 video display

SA: 1 Serial channel A

SB: 2 Serial channel B

CENT: 3 Parallel printer

NULL: 4 Bit Bucket

 Character I/O Calls Programmers Page -55

Install an input character device driver - add_ipdvr

add_ipdvr(io, stat, name, pv)

d0 10

d1 ivec Pointer to character input code

d2 statvec Pointer to character input status code

a0 name Pointer to colon null terminated
device identified code

a1 passval Value passed to input code
and status code

Returns Character driver number or -1 if no room

Theadd_ipdvr andadd_opdvr system calls are used to install character device
drivers into the system. Refer to theTechnical Reference Manual.

Install an extended input character device driver - add_xipdvr

add_xipdvr(iovec, stat, name, passval, miscvec)

d0 10

d1 iovec Pointer to character input code,
with bit 31 set.

d2 statvec Pointer to character input status code

a0 name Pointer to colon null terminated
device identified code

a1 passval Value passed to input code
and status code

a2 miscvec

Returns Character driver number or -1 if no room

Theadd_ipdvr andadd_opdvr system calls are used to install character device
drivers into the system. Refer to theTechnical Reference Manual.

Install an output character device driver - add_opdvr

add_opdvr(io, stat, name, pv)

d0 12

d1 io Pointer to character output code

d2 stat Pointer to character output status code

Page -56 Programmers Character I/O Calls

a0 name Pointer to colon null terminated
device identified code

a1 passval Value passed to output code
and status code

Returns Character driver number or -1 if no room

If an install is done withio set to 0, the named driver is deleted correctly. Character
devices are cleared and reinstalled at all levels of reset. The EOF character is
preserved incon: .

Locate the character device driver table - get_dvrlist

get_dvrlist(ioro)

d0 96

d1 ioro Flag 1 = output drivers
Flag 0 = input drivers

Return Pointer to character device driver table

Each character device driver (input or output) which is installed in the system is
identified by the following 28 byte data structure:

Offset Name Size Usage

0 doio longword Pointer to input or output code

4 status longword Pointer to status code

8 passval longword Value passed to driver at call time

12 name 16 bytes Colon & null terminated name

The writing and installation of character device drivers is described in section 4
of theTechnical Reference Manual.

Vary buffer size for a character device - new_cbuf

new_cbuf(dev, addr, len)

d0 81

d1 dev device identifier

d2 addr address of new buffer

a0 len length of new buffer

Return 0 (-1 if bad argument)

 Character I/O Calls Programmers Page -57

This system call may be used to install larger circular buffers for the interrupt
driven device drivers in1616/OS. At power-on the buffer sizes are in the 200 byte
region, which is not great for print spooling, etc. This call keeps track of and
allocates the character device buffers.

To obtain larger buffer areas, pass this system call a pointer to some free memory
(addr), the length of the free memory area (len) and an identifier which selects the
device for which you desire more buffering.

The dev argument selects the device:

dev = 0 Replace serial channel A receive buffer

dev = 1 Replace serial channel A transmit buffer

dev = 2 Replace serial channel B receive buffer

dev = 3 Replace serial channel B transmit buffer

dev = 4 Replace parallel printer output buffer

dev = 5 Replace keyboard input buffer

Do not pass a buffer length of less than 64 bytes.

If the buffer is in allocated memory and is to remain in place after the current
program hasexited, the buffer memory should be obtained from the system using
mode 1 for thegetmemsystem call.

Performing this system call with theaddr field equal to zero will result in the
standard buffer being restored. The buffer areas are within1616/OS’s data areas
within the $400 to $3c00 space. Do this before returning to1616/OSif the buffers
are only temporary.

addr = 1 Set the buffer size tolen bytes, allocated as mode 1 memory. This
will be freed by the system when the buffer size is againaltered. Great forprograms
needing a temporary larger buffer.

addr = -1 Return a pointer to the circular buffer structure associated with
devicedev. This is described in header filestoredef.h .

Formatted output - printf

printf(contstr, p1, p2, p3, p4)

d0 48

d1 contstr format control string

d2 p1 first print argument

a0 p2 second print argument

a1 p3 third print argument

a2 p4 fourth print argument

Page -58 Programmers Character I/O Calls

Return nil

This is an implementation of the C language ‘printf’ function. Refer to one of the
many ‘C’ programming manuals for a comprehensible description of this function.

contstr is a pointer to the null-terminated format control string. The characters in
this string are printed out including control characters, new-lines, etc until the end
of the string or until a conversion specification is met.

A conversion specification comprises the ‘%’ symbol followed by symbols which
control the formatting in the following way:

%[-][[0]width][.max]<char>

The argumentsp1, p2, p3 andp4 are converted and formatted according to this
conversion specification and appear in their respective positions.

The ‘-’ field forces the argument to be converted left justified within its field, rather
than right justified.

The ‘[0]width’ field specifies the width of the field for the conversion (’width’
represents a decimal number). If the ‘0’ is given the field is padded with leading
zeroes, otherwise blanks are used.

The ‘.max’ number specifies the maximum number of characters to be printed out
on a string (%s) conversion.

The <char> specifies how the argument is to be converted for output:

%b convert to binary number (1’s and 0’s)

%c print out as ASCII char

%d signed decimal number

%e converts a negative integer input to a system error message

%o octal number

%s string

%u unsigned decimal

%x hexadecimal number

For all the conversions except ‘%s’ and ‘%e’ the arguments are printed out as
numbers. The ‘%s’ conversion specification inserts the null-terminated string
pointed to by the corresponding argument into the output stream. The ‘%e’
conversion specification takes a negative integer from the system error messages,
andoutputsahuman readablestring in itsplace. Thismakeserrormessagehandling
very easy.

Examples:

system call: printf("message");

d1 pointer to control string

output message

 Character I/O Calls Programmers Page -59

Here d1 points to the null-terminated string "message", which will be printed out
literally because it contains no conversion specifications.

system call printf("value is %d", 10)
d1 pointer to control string
d2 10

output value is 10

Here d1 points to the control string, d2 contains 10 (binary). The ‘printf’ function
prints out characters from the control string until it encounters the conversion
specification, where upon the first parameter is converted into a decimal string
and printed out.

system call printf("p1 is %d, p2 is %d, p3 is %d, p4 is %d",1,10,-5,12)
d1 pointer to control string
d2 1
a0 10
a1 -5
a2 12
output p1 is 1, p2 is 10, p3 is -5, p4 is 12

The assembly code implementation of this is:
move.l #contstr,d1
move.l #1,d2
move.l #10,a0
move.l #-5,a1
move.l #12,a2
move.l #48,d0 * ‘printf’ sycall number
trap #7 * do the trap
rts

contstr dc.b "p1 is %d, p2 is %d,
p3 is %d, p4 is %d",0

end

Data formatting - sprintf

sprintf(buf, contstr, p1, p2, p3, p4)

d0 49

d1 buf pointer to output area

d2 contstr pointer to null-terminated
control string

a0 p1 first output argument

a1 p2 second output argument

a2 p3 third output argument

Return nil

Page -60 Programmers Character I/O Calls

This call formats the specified control string and data (as with ‘printf’) and leaves
the output as a null-terminated string starting at the addressbuf, rather than printing
out the characters.

Formatted output to a stream - fprintf

fprintf(handle, contstr, p1, p2, p3)

d0 120

d1 handle character device or file handle

d2 contstr Formatting control string

a0 p1 First print argument

a1 p2 Second print argument

a2 p3 Third print argument

Return nil

Formats output according tocontstr, p1, p2 andp3; simultaneously directing it to
the output stream identified byhandle.

String output to a character stream - fputs

fputs(handle, buf)

d0 121

d1 handle character device or file handle

d2 buf null-terminated string to output

Return 0 (or negative error code)

Puts the string atbuf out through the selected stream. May return an error code if
thehandle refers to a file descriptor.

Line input from a character stream - fgets

fgets(handle, buf)

d0 123

d1 handle character device or file handle

d2 buf buffer area for line

Return buf

 Character I/O Calls Programmers Page -61

Gets a null-terminated line from the input stream. The maximum length of the
line is 512 characters. Strips off new-lines and line feeds, returning a line at a
time. Returns a null string (first character in the buffer is zero) on end of file or
any other file I/O error.buf must point to a buffer of at least 513 bytes.

If handle refers to a character device, an end-of-file condition exists when an
end-of-file character is received. The end-of-file character is set by the1616/OS
command OPTION. It is normally set to $100 (no EOF character), but can be
toggled to (04) by the hotkey.

Character device miscellaneous - cdmisc

cdmisc(dvrnum, cmd, arg1, arg2, arg3)

d0 133

Refer to theTechnical Reference Manualfor details of this very extensive system
call for manipulating character devices. You would normally use thechdev
program from theUsers Diskrather than attempt to manipulate this call directly.

Ctrl D Alt Del

Page -62 Programmers Character I/O Calls

6
Video Output Calls

1616/OS’s video drivers support both 320 and 640 column modes with a low-level
‘windowing’ facility which permits text and graphics writing within a portion of
the screen whilst protecting the regions outside the window.

A terminal emulator is included, with various text attributes such as underline,
bold, italic, subscript, superscript, highlights included. Full cursor positioning is
available, with line insertion and deletion, backward scrolling, and a number of
similar constructs. This eases the task of writing text manipulation routines, since
all of these facilities can be accessed by using escape code, as described near the
end of this chapter.

Introduction
Incarnations of1616/OSbefore V3.0 used hardware scrolling of the video display.
This was done by offsetting addresses within the 1616’s video controller chip.
Hardware scrolling gave good scrolling performance but made the direct
addressing of video memory quite complicated. The clamour of complaints from
the confused has resulted in hardware scrolling being dropped. Each pixel on a
video page now occurs at a fixed offset relative to the start of the page, but scrolling
was slower. This slow scrolling was fixed in Version 4.2, and users can gain direct
access to the high speed low level video drivers, if required.

If no attributes are set in text for display, the video driver is much faster (up to ten
times) in Version 4.2a. Best performance is for white characters on a black
background, while bold, italic, etc., all slow down the display.

The 1616’s video circuitry may display anyof the sixteen32k pages in the on-board
memory. The pages start on 32k address boundaries. The normal display page is
page 15 (start address normally = $78000). The1616/OSvideo software can draw
text and graphics on any of the display pages, whilst displaying any other (or the
same) page.

If using Conal Walsh’s EGA drivers (or indeed any higher resolution display) you
will need to allocate additional video memory in yourmrdrivers file. Users of
additionalmemory boards should note that allocatingall 512k of on-board memory
to video will prevent certain programs (such asvcon) from operating correctly.

For many of the following video-specific character output functions it is better to
print characters out using the ‘putc(0, ch)’ system call, rather than ‘putchar’. This
ensures that the characters are actually sent to the video character driver, thus
overriding any I/O redirections.

Extensions to the graphics support are highly likely in the future (Andrew was
looking at various window systems).

 Video Output Calls Programmers Page -63

640 column mode:

In 640 column mode, each word (16 bit quantity) in the 1616’s video display
memory is represented as pixels on the screen in the following manner

Bits in one video word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | |

Index into Index into
register file of register file of
leftmost pixel rightmost pixel

Each of the two-bit pairs in the top diagram are used as an index into the 1616’s
colour palette, the 4x4 bit register file, U4. The four x four bit words in the register
file are written by the processor using theset_palsystem call and allow the
programmer to map each of the four colour combinations into one of the sixteen
available colours.

For example: If value of bits 15 and 14 equals 0, and palette entry 0 is set to 5,
then the colour of the displayed pixel is 5.

320 column mode

In this mode the four bit RGB and I colour signals are read directly from memory,
rather than being read from the register file. The second diagram represents this.

In 320 mode the mapping is:

Bits in one video word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | | | | | |

Colour of Colour of
leftmost pixel rightmost pixel

The border colour may be any of 16 colours, independent of the video mode. If
you use a multisync monitor, border colours may not display correctly, as some
multisyncs use the border colour level to determine the black level for the entire
display. This is not a fault of the Applix 1616. It occurs because most multisync
displays are designed for IBM PC clones which can not alter their border colour.

Set/clear 640 column mode - set_640

set_640(mode)

d0 31

Page -64 Programmers Video Output Calls

d1 mode 0 320 mode, 1 640 mode,
2: determine current mode

Return current mode

Sets the video resolution to 320 or 640 columns. If called withmode = 2, the
currentmode is returned (0 = 320 mode, 1 = 640 mode).

Many of the video and graphics system calls’ internal functions work differently
in the two modes, however the differences are almost totally transparent from an
application software point of view.

For most applications you will have to change the video window size when going
between these two modes, to reflect the different number of columns available (a
call todef_windwith an argument of 0 once themode has been set will do this).

Conal Walsh has provided an extensive range of EGA style video displays. An
MRD is available in shareware to allow access to these additional modes, using
modes 8, 10 and 12.

Set the video display page - set_vdp

set_vdp(page)

d0 32

d1 page new display page

Return nil

This call selects one of the 1616’s sixteen 32 kbyte video display pages for the
source of video display output. Bounce through these to find out what code looks
like when it is in memory! Note that you can set the display page to larger than
32 kbytes, by using an MRD. This is used for EGA and denser displays.

Set the video software access page - set_vap

set_vap(page)

d0 33

d1 page new access page

Return nil

This call selects the 32k video page which is henceforth to be used for software
accesses. All video output calls alter thepage which is selected here: the displaying
of thepage is quite independent of the software access.

Set the video text foreground colour mask - set_fgcol

set_fgcol (colmask)

 Video Output Calls Programmers Page -65

d0: 34

d1 colmask colour mask

Return nil

Character display data is created by taking a 16 bit (one row of a character, 8 pixels)
word from the character set lookup table, called ‘charpattern’ here and calculating
the following:

data = (charpattern and fgmask) or ((not charpattern) and bgmask)

The resulting pattern is written into the display RAM.

The character set patterns are 16 bits wide, with an8 x 8 font implemented by
setting neighbouring bits in the 16 bit word to the same value. Pixels which are
‘on’ in the character shapes are represented by a ‘11’; pixels which are off are
represented by a ‘00’.

In 640 mode the foreground and background colour masks may be considered to
be a group of eight bit-pairs, each pair corresponding to a pixel colour (bits 14 15
correspond to the leftmost pixel of a character).

In320 modethe masks area groupof fourx four-bit groups. Eachgroup determines
the character colours in 320 mode.

The effect of all this is that the foreground colour mask determines the colour of
the character foreground and the background mask determines the colour of the
background!

Useful values for the masks in 640 column mode are:

colour = 0 $0000

colour = 1 $5555

colour = 2 $aaaa

colour = 3 $ffff

In 320 mode:

colour = 0 $0000

colour = 1 $1111

colour = 2 $2222

etc.

Set the video text background colour mask - set_bgcol

set_bgcol(colmask)

d0 35

d1 colmask 16 bit background colour mask

Page -66 Programmers Video Output Calls

Return nil

The background of a character is the part which is normally black; varying it
provides different text appearances: seeset_fgcol, above.

Set the video border colour - set_bdcol

set_bdcol(col)

d0 36

d1 col colour

Return nil

Sets the video border colour tocol. The borders of the screen are those parts of
the phosphor which are outside the normal viewing area.

The colour may be in the range 0 - 15.

Beware of some multisync monitors setting their black level to the border colou.
This can be a real pain for colourful people.

Set a palette entry - set_pal

set_pal(palpos, col)

d0 37

d1 palpos palette index

d2 col colour at that index

Return nil

This system call sets up one of the 1616’s video palette entries. See the start of
this section for a description of how video data indexes into the register file.

The palette index,palpos is in the range 0 - 3.

The colour,col is in the range 0 - 15.

Get a pointer to a character shape definition - rdch_shape

rdch_shape(charno)

d0 38

d1 charno ASCII code of character

Return pointer to character shape table

Returns a pointer to1616/OS’s internal representation of the character whose ASCII
code is incharno. The pointer points to 8 x 16 bit words. For example, here is the
shape for the character ‘A’:

 Video Output Calls Programmers Page -67

bit 15 to 0

word 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 Rowzero
word 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 Row one
word 2 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 Row two
word 3 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 Rowthree
word 4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 Rowfour
word 5 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 Rowfive
word 6 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 Row six
word 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rowseven

pixel 7 6 5 4 3 2 1 0

The neighbouring bit-pairs for each pixel are always set, so that the foreground
and background masking works correctly.

This system call is provided so that you may alter and install character shapes. All
characters from $00 to $ff are valid.

Redefine a character shape - def_chshape

def_chshape(charno, defptr)

d0 39

d1 charno ASCII code of character to redefine

d2 defptr pointer to new definition

Return nil

Moves the 16 byte character shape definition pointed to bydefptr so that it over-
writes the old definition. Your new shape,charno, is used henceforth.

If the first argument (in d1) is -1, a pointer to the raw EPROM character set, in
uncompressed form, is returned (from Version 4.0b).

Select a new video character set - newchset

newchset(ptr)

d0 130

d1 ptr pointer to new character set

Return nil

ptr points to a replacement character set which may be up to 4 kbytes in size. The
character set consists of up to 256 bitmaps such as that above, arranged in ASCII
order.

If ptr is zero, the system restores the internal, default character set (very handy
when you really stuff it up).

Page -68 Programmers Video Output Calls

Define a video window - def_wind

def_wind(wind)

d0 40

d1 windptr pointer to window definition structure

Return usually garbage (formerly pointer to current window definition)

This system call defines a rectangular window for subsequent text and graphics
use. The window is effectively a smaller screen. All scrolling, cursor positioning,
graphics commands, etc. are relative to the window, rather than to the 1616’s entire
video display. In fact the normal 80 x 25 display is internally treated as just another
window, 80 characters by 25.

If this call is made withwindptr equal to zero then the system installs a default
window for the current mode (25 * 40 for 320 mode, 25 * 80 for 640 mode).

If this call is made withwindptr equal to 1 then a pointer to the window structure
which the system is currently using is returned. No alterations are made.

A window is defined to the system by passing a pointer to a data structure com-
prising of 8 16-bit words:

x_start dc.w 1 * Start coordinates, relative to top left of
y_start dc.w 1 * 80x25 screen
xend dc.w 1 * End co-ordinates + 1, relative to 80x25
yend dc.w 1 * screen
bg_col dc.w 1 * Window background colour mask
fg_col dc.w 1 * Window foreground colour mask
curs_x dc.w 1 * Current cursor relative x position
curs_y dc.w 1 * Current cursor relative y position

These words are used as follows:

xstart, ystart
These define the position top left character of the window in the
entire video display. The very top left character has coordinates of
(0, 0).

xend, yend
These define the position of the bottom right-hand corner of the
window in the entire display. The character at absolute position
(xend, yend) is in fact outside the window. The character at (xend-1,
yend-1) is just inside the window. The total size of the defined
window is given by (xend-xstart) x (yend-ystart).

fg_col, bg_col
The foreground and background colours used for text inside this
window.

 Video Output Calls Programmers Page -69

curs_x, curs_y
The relative position of the cursor in this window. The cursor is
both theplace where the blinking squareappears and the placewhere
the next printable character is put. This cursor position is relative
to the window. The character at (curs_x, curs_y) appears at the
absolute screen position (xstart+curs_x, ystart+curs_y).

This 8 word data structure is located within your program’s data areas. The cursor
position and colour masks are updated by the system as they change, so you may
select a different window structure at a different screen position and later come
back to the original one, with the necessary information preserved.

Whena windowis selected itbecomes the ‘currentwindow’. All cursor positioning
commands occur relative to the window’s top left corner; the colour commands
affect this window alone.

Multiple windows are implemented by having several such data structures in
memory, each with different contents (particularly different positions!). The
windows are selected when needed and characters are printed out and graphics
functions may be performed.

When selecting a window for the first time with a pointer to a data area which has
not been initialised, first set xstart, ystart, xend and yend (these should not be varied
for the life of the window). Initialise the background colour to $0000 (optional)
and the foreground colour to $ffff (optional) and set curs_x and curs_y to 0.

As an alternative to clearing curs_x and curs_y, you can print out a control-L (clear
screen command) immediately after the window has been defined. This will fill
the window with your background colour (here the system is clearing the screen
where the current screen is a window). It will also move the cursor to 0, 0.

Move video window contents - move_wind

move_wind(buf, mode)

d0 42

d1 buf pointer to memory buffer

d2 mode move mode

Return nil

This system call is used for moving the data contained in the current window to
and from main memory.

mode = 0
The data in the window is swapped with the data pointed to bybuf.

mode = 1
The data in the window is moved to memory pointed to bybuf.

mode = 2
The data pointed to bybuf is moved to the window.

Page -70 Programmers Video Output Calls

The data in the window is treated in its raw, bit-mapped mode. You may freely
move data in and out of windows, permitting overlaying. The only restriction is
that once the data from within a window has been pulled into main memory it must
be put back into a window with the same horizontal and vertical sizes. It may be
written back to a different position.

The amount of free memory required atbuf is determined by the size of the current
window:

buffer size (in bytes) =

(xend - xstart) * (yend - ystart) * 16 (in 640 mode)

(xend - xstart) * (yend - ystart) * 32 (in 320 mode)

This function is quick!

Fill the video window - fill_wind

fill_wind(col)

d0 44

d1 col colour to fill with

Return nil

Entirely fills the current window with the lower 16 bits ofcol.

Get physical video addresses - vid_address

vid_address(x, y)

d0 41

d1 x x coordinate

d2 y y coordinate

Return byte address

This system call is provided to facilitate direct manipulation of the video display
RAM by application programs.

The argumentsx andy are the coordinates of a pixel on the screen, relative to the
top left corner of the screen, not the current window. Hencex will be in the range
0 - 639 andy will be in the range 0 - 199. This range holds true for both 320 and
640 mode: in 320 mode you will have to multiply the desired pixel’sx coordinate
by 2 before making this call.

This call returns a pointer to the actual byte which the 1616’s video circuitry reads
from memory to produce the pixel. In 640 mode there will be four pixels contained
within this byte (2 in 320 mode); it is up to you to resolve the actual bit position
within the byte.

 Video Output Calls Programmers Page -71

The translation from screen coordinates to physical addresses is quite complicated
in the 1616, but less so than under pre-3.0 versions of the operating system. If
you are doing intensive direct screen I/O the following steps are suggested:

• Set up the desired video mode (320 or 640)

• Call def_windwith an argument of 0 to use the whole screen

• Call fill_wind with the desired background colour.

• Make 200 calls tovid_addresswith x = 0 andy incrementing, setting up a
local table of pointers to the start of each line in your data areas.

• Do all your video access by offsetting from these pointers

Low level video character drawing - rawvid

rawvid(row, col, ch, fgmask, bgmask)

d0 43

d1 row character row number

d2 col character column number

a0 ch ASCII code

a1 fgmask foreground colour mask

a2 bgmask background colour mask

Return nil

This call writes the characterch into the video display at rowrow, columncol. The
current window setting is ignored. This is a low-level entry point which has the
advantage of being re-entrant: if you wish to print out characters from within an
interrupt subroutine this is the way to do it. In Version 4, the top byte of the
foreground colour mask (passed in a1) appears to set the text attribute (bold,
underline, etc) for characters printed (I don’t believe Andrew has admitted to
arranging that, so it may not always be safe).

Alter cursor mode - scurs_mode

scurs_mode(rate, enable, mask)

d0 45

d1 rate cursor flash rate

d2 enable cursor enable

a0 mask cursor bit mask

Return nil

Page -72 Programmers Video Output Calls

This system call permits manipulation of the video cursor. The 1616 video cursor
is implemented under software, using the system vertical sync interrupt timer.

The cursor has three attributes: the rate at which it flashes, whether or not it appears
and its shape. These may all be altered with this system call.

rate
This argument sets the cursor flash rate. The resulting rate is
(25/rate) flashes per second. If you don’t want to alter the flash rate,
pass a zero forrate.

enable
If enable = 0, retain current cursor mode.
If enable = 1, turn cursor off.
If enable = 2, re-enable flashing cursor.
If enable = 3, setrate, enable andmask to default state.
If enable = 4, return currentrate setting.
If enable = 5, return currentenable setting.
If enable = 6, return pointer to current cursormask.

There is also a block cursor mode, operated byenable values of 7,
8, 9. Some may requirerate and/ormask to be 0.
If enable = 7, set cursor to block mode.
If enable = 8, set cursor to flashing block.
If enable = 9, return non-zero if block mode already selected.

mask
pointer to eight 16-bit words which are exclusive-OR’ed with the
character under the cursor at interrupt time. The data atmask is
copied into internal1616/OSdata areas. Ifmask = 0 (nil pointer) then
the blink mask remains unaltered.

The initial, default conditions (those which are set up byenable = 3) are:

rate = 12
enable = 2
mask = 8 * $ffff (block cursor)

Install mouse driver intercept - mousetrap

mousetrap(trapno, vector)

d0 46

d1 trapno Intercept number

d2 vector User code entry point

Return Previous vector

This system call has been include to facilitate the writing of a mouse driver. It is
detailed (except for the embarrassing bits) in theTechnical Reference Manual.

 Video Output Calls Programmers Page -73

Video driver escape codes
The video display may be manipulated from within an application program by
sending ‘control codes’ and ‘escape codes’ to the video driver. Control codes are
simplysomeof theASCII characters less that32. Escapecodes aredonebyprinting
an ‘ESC’ character (ASCII code $1b hex, 27 decimal), followed by an appropriate
character sequence. Remember that all these codes are case sensitive.

Many new escape codes have been added to the terminal driver. It is now very
similar to the Televideo 950 terminal. The major difference is that the 1616 has
25 displayed lines, rather than 24. The driver supports underlining, italics, sub-
script, superscript and bold characters, all derived from the internal character set,
on the fly.

Option 18 sets the video output mode.

If bit 0 is set, all escape code sequences are ignored: the characters are simply
printed out.

If bit 1 is set, all control characters remove their special meaning, even carriage
return, linefeed, etc. Good for inspecting files from foreign machines.

Setting bits 0 and 1 puts the terminal in a sort of monitor mode, enabling you to
inspect exactly what characters are coming out.

If bit 2 of option 18 is set, the terminal emulation follows the TVI950 terminal
emulation more closely. Specifically, if this bit is clear, then control-L clears the
screen, and tabs overwrite characters. If this bit is set, then control-L moves the
cursor forward, and tabs are non-destructive: they simply move the cursor out to
the next tab stop, without writing anything on the screen.

The driver suppresses linefeeds after word wraps. This means that if a character
is placed in the rightmost column, and the next character is a linefeed (or a
carriage-return linefeed), then the linefeed is ignored. This is because the placing
of a character in the last column will have caused a linefeed anyway. One
consequence of this behaviour is that files whose lines are exactly eighty characters
wide can be displayed without getting blank lines inserted.

All the escape codes operate relative to the current window.

Control codes

^@ The null character is ignored. ($0)

^I Tabs move the cursor to the next tab column which is an even
multiple of eight. If bit 2 ofoption 18 is clear, spaces are drawn.
If it is not clear, no spaces are drawn. ($9)

^B Beep the speaker, different tone. ($2)

^G Beeps the speaker. ($7)

^J Linefeed. ($A or .10)

Page -74 Programmers Video Output Calls

^K Moves the cursor up, if it is not at the top row. ($B or .11)

^L If bit 2 of option 18 is clear, it clears the screen. Otherwise move
the cursor forward, if it is not in the last column. ($C or .12)

^M Carriage return. ($D or .13)

^V Moves the cursor down, if it is not at the bottom row. ($16 or .22)

^Z Clear the screen and home the cursor. ($1A .26)

^^ Ascii code $1e or .30 : homes the cursor.

Escape sequences

ESC = (row+32) (col+32) Positions the cursor. ($1B, $3D, row + $20, col
+ $20).

ESC) Start highlighting. ($1B, $29) Set current foreground colour to 2 in
640 mode, 10 in 320 mode. Current background becomes 1 in 640
mode, 5 in 320 mode.

ESC (End highlighting. ($1B, $28) Set current foreground to 3 in 640
mode, 15 in 320 mode, background to 0.

ESC * Clear the screen, or current window, home the cursor. ($1B, $2A).

ESC B (value+32) Sets the background colour to ‘value’. ($1B, $42, col +
$20) Only values allowed are 0 to 3 in 640 mode, 0 to 15 in 320
mode.

ESC b Visible bell. ($1B, $62) This code generates a beep which has a
lower frequency than that produced by a ^G.

ESC E Insert a line at the current one: all lines below the current line are
moved down one, clears current line. ($1B, $45)

ESC F (value+32) Sets the foreground colour to ‘value’. ($1B, $46, col +
$20) Only colours 0 to 3 in 640 mode, 0 to 15 in 320 mode.

ESC G 1 Sets subscript mode.

ESC G 2 Sets superscript mode.

ESC G 4 Sets bold mode.

ESC G 8 Sets underline mode.

ESC G @ Sets italic mode.

ESC G 0 Clears subscript, superscript, underline, bold and italic modes.

ESC I Back tab: moves the cursor back to the previous tab stop, provided
it is not in column 0.

ESC j Reverse scroll display.

 Video Output Calls Programmers Page -75

ESC M (from+32) (to+32) Copies the contents of a line from one row to
another. ($1B, $4D, from + $20, to + $20).

ESC P (position+32) (value+32) Writes ‘value’ into the 1616 video pallette
at ‘position’. ($1B, $50, position + $20, value + $20).

ESC Q Character insert. Moves every character to the right of the cursor
one character to the right.

ESC q Enter insert mode. In this mode every printed character causes all
the characters to its right to be moved right. The rightmost character
is lost.

ESC r End insert mode. ($1B, $72).

ESC R Delete the current line. ($1B, $52) Moves all the lines below the
current one up one line. Clears bottom line to current background
colour.

ESC S (value+32) Sets the border colour to ‘value’. ($1B, $53, value +
$20).

ESC t Clears from cursor to the end of the line. ($1B, $74).

ESC T Clears from cursor to the end of the line. ($1B, $54)

ESC W Delete character. All characters to the right of the cursor are moved
left one position, deleting the character under the cursor.

ESC Y Clears from cursor to the end of the screen.

ESC . 0 Cursor off.

ESC . 1 Flashing block cursor.

ESC . 2 Steady block cursor.

ESC . 3 Flashing underline cursor.

ESC . 4 Steady underline cursor.

ESC 0x03 nn Delay ofnn ticks

Page -76 Programmers Video Output Calls

7
Graphics System Calls

Introduction
The graphics system calls are relatively straightforward: pixels, lines, etc may be
drawn relative to a window (the current window) or relative to the screen as a
whole. Graphics functions which operate relative to the entire screen are said to
draw on the ‘absolute screen’.

If graphics operations are being performed relative to the current window then the
pixel at (0,0) corresponds to the top left pixel of the top left character in the current
window. For graphics purposes the current window may be considered to extend
from (xstart*8, ystart*8) to (xend*8 - 1, yend*8 - 1). These are pixel coordinates,
not character coordinates - characters take eight pixels in both directions.

Whenusinggraphics functions, don’t forget toset your foregroundandbackground
colours prior to making the line drawing or fill calls. Nothing is less visible than
a black line drawn on a black background!

Area fill routine - fill

fill(x, y, val)

d0 47

d1 x x coordinate of start point

d2 y y coordinate of start point

a0 val value to fill with
or pointer to texture table

Return 0 or -1 if fill failed

This is an area fill routine based upon Jeremy Fitzhardinge’s algorithm.

fill sets all the pixels in an area of any shape. The value of the pixel at (x, y) is
called thebackground colour. Itsvalue is readand the fill routinevisitsand changes
every pixel of the same value in the currently defined window to which a path can
be found.

x andy are a pixel position relative to the current window. Ifval is in the range
0-15 it is assumed to be the value with which to fill the area. Ifval is outside this
range it is assumed to point to a table of sixteen 32 bit long words which represent
a bit-mapped texture pattern with which to perform the fill.

If the fill is non-textured (val in the range 0-15)fill checks thatval is not the same
as the background colour, which would result in no filling at all. A value of -1 is
returned in this case.

 Graphics System Calls Programmers Page -77

In 640 pixel mode the texture table represents an array of 16x16 pixels, 2 bits per
pixel. In 320 pixel mode it represents a table of 8 horizontal by 16 vertical pixels,
4 bits per pixel.

Before performing a textured fill, this system call checks that none of the pixels
represented in the texture table have the same value as the background colour,
which would causefill to never terminate. A value of -1 is returned if this happens.

The fill routine uses 16000 bytes of stack space in which to store its backtracking
information. A very complicated fill may cause this stack to overflow. If this
occurs the fill terminates and a negative error code is returned.

Raw graphics point draw - rset_pel

rset_pel(x, y, val)

d0 50

d1 x x coordinate

d2 y y coordinate

a0 val value to plot

Return nil

Plots a point directly on the screen, relative to extreme top-left pixel, ignoring the
current window.

In 320 mode the four least significant bits ofval are written to the selected pixel,
henceval is the desired pixel colour.

In 640 mode the two least significant bits ofval are written to the selected pixel,
henceval is the desired index into the colour pallette register file.

Windowed graphics point draw - set_pel

set_pel(x, y, val)

d0 51

d1 x x coordinate

d2 y y coordinate

a0 val value to plot

Return nil

Plots the pixel as withrset_pelabove, except thatx andy are relative to the current
window, not to the entire screen. If the point lies outside the current window it is
not plotted. Note that d2 (y pointer) may be incremented during this call, so it has
to be reset to the correct value prior to the next call.

Page -78 Programmers Graphics System Calls

Raw graphics line draw - rline

rline(x0, y0, x1, y1)

d0 52

d1 x0 x coordinate of line start

d2 y0 y coordinate of line start

a0 x1 x coordinate of line end

a1 y1 y coordinate of line end

Return nil

This system call is no longer supported. Usedrawline.

Windowed graphics line draw - drawline

drawline(x0, y0, x1, y1)

d0 53

d1 x0 x coordinate of line start

d2 y0 y coordinate of line start

a0 x1 x coordinate of line end

a1 y1 y coordinate of line end

Return nil

Draws a line within and relative to the current window. Any pixels which lie
outside the currentwindowarenot plotted. The line is drawn in the currentgraphics
colour.

Raw pixel read - rread_pel

rread_pel(x, y)

d0 54

d1 x x coordinate

d2 y y coordinate

Return pixel value

Reads the value of a pixel positioned relative to the absolute screen.

In 320 mode a number between 0 and 15 (the colour) is returned. In 640 mode a
number between 0 and 3 (the colour pallette register file index) is returned.

 Graphics System Calls Programmers Page -79

Windowed pixel read - read_pel

read_pel(x, y)

d0 55

d1 x x coordinate

d2 y y coordinate

Return pixel value

Reads the value of a pixel positioned relative to the current window.

Set graphics colour - sgcol

sgcol(colour)

d0 56

d1 colour line draw colour

Return nil

Lines drawn after this system call are drawn with the specifiedcolour. Thecolour
may be in the range 0-3 (640 mode) or 0-15 (320 mode).

Set graphics background colour - sgbgcol

sgbgcol(colour)

d0 57

Set graphics line texture mask - sgtexture

sgtexture(val)

d0 58

These two system calls are no longer supported.

Raw circle draw - rcircle

rcircle(x, y, radius)

d0 59

d1 x x coordinate of centre

d2 y y coordinate of centre

a0 radius circle radius

Page -80 Programmers Graphics System Calls

Return nil

Draws a circle positioned atx, y on the absolute screen with radius radius. The
circle is drawn in the current graphics colour.

Windowed circle draw - circle

circle(x, y, radius)

d0 60

d1 x x coordinate of centre

d2 y y coordinate of centre

a0 radius circle radius

Return nil

Draws a circle positioned atx, y relative to the current window with radiusradius.
The circle is drawn in the current graphics colour. Any points which lie outside
the current window are not plotted.

Set graphics dot draw mode - sdotmode

sdotmode

d0 61

d1 mode 0 = write
1 = OR
2 = AND
3 = XOR
4 = read

Return Current mode

This system call assigns the manner in which all the graphics output system calls
draw pixels. Essentially there are four internal pixel settingmodes (0-3), and one
mode to read back the current setting (4).

mode 0 write - pm_write
This is the default mode. Every time a pixel is to be drawn, the new
value overwrites the old one in video RAM.

mode 1 OR - pm_or
The new pixel data is logically OR’ed with the data presently in the
video RAM. Thus, and ‘1’ bits in the new pixel set individual bits
within a pixel, rather than an entire pixel.

 Graphics System Calls Programmers Page -81

mode 2 AND - pm_and
The new pixel data is complemented and logically AND’ed with the
data presently in video RAM. Any ‘1’ bits in the new pixel data
clear the corresponding bits in the pixels in video RAM.

mode 3 XOR - pm_xor
The new pixel data is logically OR’ed with the data currently in
video RAM, so that a ‘1’ bit in the new pixel data causes the
corresponding bit in the video RAM to be complemented.

mode 4 read - pm_read
Simply reads back the current setting of the dot mode.

The dot mode may be used for addressing individual bit planes in the video RAM.
In 320 mode you can individually address four bit planes, by setting the foreground
colour to 1, 2, 4 or 8. You draw lines in the bit plane by callingdrawline, set_pel,
etc., with OR mode set. The lines may be erased again (leaving any data in other
bit planes undisturbed) by setting AND mode, and redrawing them with the same
start and end points, and the same foreground colour.

Page -82 Programmers Graphics System Calls

8
Hardware Control Calls

Introduction
These are a group of system calls which may be used to perform various
manipulations upon the 1616’s hardware without having to resort to directly
accessing I/O ports.

These calls allow easy selection and use of the analog to digital and digital to
analog facilities, including tone generation for playing sounds, and testing for
completion of a previous tone. There are calls for testing for DIP switch and
joystick button settings, and also for programming the serial ports and the video
controller chip. For more visual effects, there is an LED you can blink (or even
pulse width modulate, if you really want to go to the trouble).

A later version of the 1616/OS will include calls for easy access to A-bus peripheral
boards.

Select an analogue input - anipsel

anipsel(ipnum)

d0 70

d1 ipnum analogue input channel number

Return nil

Uses the passed number to switch one of the analogue inputs into the
analogue-to-digital converter comparator input.

Input channel 7 selects the joystick X direction potentiometer. Input channel 6
selects the joystick Y direction potentiometer. Input channels 5 to 0 select general
purpose analogue inputs AI5 to AI0 on pins 32 to 27 on the User I/O connector.

Select an analogue output - anopsel

anopsel(opnum)

d0 71

d1 opnum analogue output channel number

Return nil

Selects one of the four analogue outputs (driven by integrated circuit U23, a dual
4 channel analogue multiplexor, 4052). When a particular analogue output is
selected, all the others hold their previous voltages (for a limited period) on their
holding capacitors. Analogue outputs 2 and 3 (shown in schematic as 0 and 1) are

 Hardware Control Calls Programmers Page -83

available on pins 33 and 34 of the User I/O connector, after buffering by an LM324
operational amplifier. The other outputs go to the right and left loudspeaker
channels, via a two or four watt stereo amplifier.

output usage channel

0 Right sound channel
1 Left sound channel
2 Analogue output 0
3 Analogue output 1

Disable analogue outputs - anopdis

anopdis()

d0 72

Return nil

Disables all four analogue outputs, so that all channels hold their current voltages
(for a while). You should disable outputs prior to doing an A to D conversion
usingadc.

Perform analogue to digital conversion - adc

adc()

d0 73

Return converted value

This call performs a successive approximations analogue-to-digital conversion of
the current analogue input source (selected with theanipselcall).

The returned value will be in the range 0 - 255. A value of 0 indicates an input
voltage of approximately -2.2 volts; a value of 255 indicates a voltage of
approximately +2.2 volts.

Note that the A/D conversion routine changes the output of the DAC, so it may
be desirable to disable all the analogue outputs usinganopdisbefore performing
A/D conversions.

Perform digital to analogue conversion - dac

dac(val)

d0 74

d1 val DAC output value

Return nil

Page -84 Programmers Hardware Control Calls

Writes the passed value out to the DAC. If one of the analogue output channels
is selected, then its level will change to reflect the new value.

Set/clear LED - set_led

set_led(val)

d0 75

d1 val 0 LED off, 1 LED on

Return nil

Turns the 1616’s status LED on or off. Write code to pulse width modulate it for
special effects.

Play a waveform - freetone

freetone(table, tablen, length, preload)

d0 76

d1 table pointer to sound table

d2 tablen length of table (in bytes)

a0 length number of bytes to output

a1 preload VIA timer1 preload constant

Return nil

This system call takes a table of bytes pointed to bytable and sequentially writes
them out to the DAC. To produce a sound waveform, select one of the speaker
analogue output channels (usinganopsel) before performing this call. This system
call may be used for general purpose waveform output from any of the analogue
output channels. If thelength field is $ffffffff the duration of the waveform will
be very long indeed - effectively infinite for most applications.

The tablen argument refers to the length of your table (in bytes).

The length argument is the number of bytes which are to be sent from your table
to the DAC. If length is greater thantablen then the software recirculates through
thetable (it ‘wraps around’).

Thepreload argument is used to set the period between samples. It is passed to
theent1intssystem call to generate an interrupt stream.

Since the number of samples which are sent islength we can calculate the actual
duration of the free tone from:
tone duration =length * ((2 * preload) + 3.5) / 750,000 seconds.
For an 11 kHz sound file, I calculate that 32 should be about right.

 Hardware Control Calls Programmers Page -85

This system call returns immediately with the interrupt stream and some other
values initialised. Your program may continue executing (more slowly!) while
the interrupts continue. Since the DAC output data is being obtained from the
table in your data space you should not alter it until thefreetonehas ended (unless
you specifically want to). When the tone has completed the interrupts are disabled.
The time during which the waveform is being played may be used for building the
next table.

Thefttime system call is provided for determining the current state of thefreetone
interrupt code and may be used to poll for the completion of the previous tone.

The waveform output may be prematurely halted by using thedist1intssystem
call. It may be restarted or changed by performing anotherfreetonebefore the
first has ended.

Note that the DAC produces its most negative voltage with an input of $00 and
its most positive voltage with an input of $ff, so sound waveforms should have a
mean of $80 to get best results and the widest possible dynamic range.

Return time left for freetone completion - fttime

fttime()

d0 77

Return counts to completion

Returns the number of VIA timer1 interrupts left until completion of the last free
tone output. When this call returns 0, thefreetonehas ended. Please check before
starting antherfreetone, or the results won’t be what you expect. If playing
soundfiles from the command line, look up thewait command!

Read input port - rdiport

rdiport()

d0 78

Return input port value

Returns the byte read from the 1616’s input port (integrated circuit U19). This
port is the joystick buttons, plus the four DIP switches. See below for a more
useful (albeit more complicated) version of this call.

Read time-accumulated input port - rdbiport

rdbiport()

d0 79

Return accumulated value

Page -86 Programmers Hardware Control Calls

There is a vertical sync interrupt ISR within1616/OSwhich reads the input port
every 20 milliseconds and accumulates a logical OR and a logical AND of the
readings. This system call returns the OR and AND accumulators and reinitialises
them.

This is specifically designed for catching quick presses of the joystick buttons and
remembering the press for programs which cannot afford to waste time continually
polling the buttons. If, for example, a joystick button input went from high to low
and then high again, the AND accumulator would retain a zero in the relevant bit
position.

Bits0-7of thereturned longwordrepresent theORaccumulator;bits8-15represent
the AND accumulator.

In general, to use this function you must initially call it once to initialise the
accumulators, then discard the result. From this point onwards, if a call tordbiport
returns with bit 2 of d0 set, then a high has been detected on PB0 (push button
zero) - it may still be high and will have to be checked for a release. If the call
returns with bit 10 of d0 clear then a low has been detected on PB0.

Reprogram a serial port - prog_sio

prog_sio(chan, spptr)

d0 82

d1 chan 0 for channel A,
1 for channel B

d2 spptr or Pointer to serial channel
0 or 1 initialisation structure

Return 0 (-1 if bad parameters)

Reprograms one of the 1616’s Zilog 8530 SCC serial channels.spptr must point
to the following five word data structure:

baudrate dc.w 1 * Actual baud rate
(eg, #9600 decimal)

rxbits dc.w 1 * 0: 5 bits, 1: 6 bits,
2: 7 bits, 3: 8 bits

txbits dc.w 1 * 0: 5 bits, 1: 6 bits,
2: 7 bits, 3: 8 bits

parity dc.w 1 * 0: None, 1: Odd, 2: Even
stopbits dc.w 1 * 0: 1 stop, 1: 1.5 stop, 2: 2 stop

If any of the words are outside the indicated range an error code of -1 is returned.
The serial receive routine adds masks ANDing with $7F, $3F or $1F, when pro-
grammed for 7, 6 or 5 bits. This was added in V3.2b to keep Andrew McNamara
happy!

 Hardware Control Calls Programmers Page -87

If the syscall is entered with d2 containing 0, then the call returns a pointer. The
pointer is to a data structure identical to that used byspptr, which will contain the
current settings of the specified serial channel. This makes it much easier to
determine the current serial port settings.

If the syscall is entered with d2 containing 1, the call returns the address of the
SCC structure for SCC channelchan.

The serial drivers were extensively reworked as at1616/OS Version 4.2a, in
association with extensive changes to character devices in general (see thecdmisc
syscall). The driver now supports up to 4 SCC (8530) serial chips, for potential
use with an expansion card containing an extra three SCC chips.

Note that detection of a break condition on the SCC is only possible when the
receiver is enabled. i.e. DCD is asserted, or DCD is being ignored by having the
SCC ignore hardware flow control.

There is a device associated with each SCC channel, as described in the header
file scc.h on your 4.2 User Disk.

CRTC initialise - crtc_init

crtc_init(mode, ptr)

d0 140

d1 mode programming mode

d2 ptr Pointer to 14 byte memory buffer

Return None

mode = 0
Move the 14 bytes pointed to byptr into 6545 CRTC registers 0 to 13.

mode = 1
Move the1616/OSshadow register image of the 6545 CRTC registers to memory
pointed at byptr.

mode = 2
Restores the 6545 CRTC and its OS image to the default settings.

There is now a shadow register set for the CRTC, and the shadow registers can be
manipulated via this syscall. Obviously you use mode 1 first, hen modify th values
obtained, and then write them to the CRTC using mode 0 ... unless you like
calculating CTRC settings

Page -88 Programmers Hardware Control Calls

9
Short Form Call List Appendix A

This Appendix is now included in theQuick Reference Manual. Too hard to keep
it up to date in two places. A fairly complete list of syscalls is included in the
index.

10
Error Messages Appendix B

Most of the error messages which come out of1616/OSare self explanatory. There
is an amount of internal consistency checking and protection in version 3 and 4 of
the OS, and violations of these can produce error messages which need more
interpretation.

The other error messages fall into two categories: internal errors, and warnings,
and are listed after theblock and memory errors.

Block and memory errors
Error Meaning
code

-1 ffff ffff Unknown, general error

-2 ffff fffe Disk is write protected

-3 ffff fffd Invalid block driver number on block I/O system call

-4 ffff fffc No space to install block device driver (8 max)

-5 ffff fffb I/O error: bad disk, door open, RAM disk block checksum failure

-6 ffff fffa Invalid block requested on block I/O call

-7 ffff fff9 Disk full

-8 ffff fff8 Invalid file handle on file I/O system call

-9 ffff fff7 Bad file name

-10 ffff fff6 File full (formerly 512k, obsolete)

-11 ffff fff5 File not currently open: possibly a bad file handle

-12 ffff fff4 File not open for reading

-13 ffff fff3 File not open for writing

-14 ffff fff2 File open for reading (not writing)

-15 ffff fff1 File open for writing (not reading)

 Short Form Call List Appendix A Programmers Page -89

-16 ffff fff0 Out of FCB’s - too many files open (16 max)

-17 ffff ffef File not found

-18 ffff ffee Attempted to read beyond end of file

-19 ffff ffed Duplicate filename would result fromrename

-20 ffff ffec Invalid argument: some nonsense passed to a file I/O call

-21 ffff ffeb Attempted to seek beyond end of file

-22 ffff ffea Seek not allowed - file is write-only (obsolete)

-23 ffff ffe9 File currently open

-24 ffff ffe8 Memory allocation failure: out of memory

-25 ffff ffe7 Directory: file-only operation performed upon a directory

-26 ffff ffe6 Not directory: directory-only operation on a file

-27 ffff ffe5 Tried to delete a non-empty directory

-28 ffff ffe4 Directory is full

-29 ffff ffe3 File is locked

-30 ffff ffe2 Bad magic number in relocatable file header

-31 ffff ffe1 User interrupt killed program

-32 ffff ffe0 No permission for file access

-33 ffff ffdf Exec level too deep

-34 ffff ffde Too many processes

-35 ffff ffdc Exited due to kill

-36 ffff ffdb Read/Write pipe with other end closed

-37 ffff ffda Invalid PID passed to system call

-38 ffff ffd9 Code $%x: No error

-39 ffff ffd8 Error code -%d

-40 ffff ffd7 No error

-41 ffff ffd6 Unknown error

Internal errors
The system responds to an internal error by printing the following message:

Internal error N1: call PC = $N2. N3 N4

Page -90 Programmers Error Messages Appendix B

Where N1 is the internal error number, N2 is (perhaps) the program counter value
atwhich the internalerroroccured.N3andN4areadditional information,presented
as hexadecimal numbers. After this message is displayed, the system halts, and
needs to be restarted.

If an internal error can be reproducibly and inexplicably generated, please send
APPLIX details of how to produce the error, so it can be investigated.

The implemented internal errors are listed below:

Internal error 1 and 2

Inconsistency in the memory manager (getmem), possibly due to memory
corruption.

Internal error 3, 4, 5 and 6

Inconsistency in the memory manager (freemem), possibly due to memory
corruption.

Internal error 7

Inconsistency in the memory manager during automatic freeing of a pro-
gram’s memory on return fromexec.

Internal error 10

A request was made togetmemfor more memory than was available. This
internal error may be disabled with OPTION 5. If OPTION 5 is disabled,
getmemreturns an error code to the calling program when out of memory,
rather than generating an internal error.

Internal error 100, 101 and 102

Problems involving memory allocation and freeing in the line editor last-line
recall management. Possibly caused by memory corruption.

Internal error 400

The file system code decided to deallocate a block which lies beyond the
range of the disk. Probably caused by a corrupted file system. Use
fscheck.xrel to repair it.

Internal error 500

In thecallmrd system call a bad MRD header was encountered. This means
that the memory reserved for MRDs has been corrupted. The system must
be cold booted to recover.

Warning messages
These messages are produced when something unpleasant has been detected.

 Error Messages Appendix B Programmers Page -91

Suppressed write to block N1 on DEV [N2]

This message comes out of theblkwritesystem call when an attempt has been
made to write to the system block N1 on the device identified by DEV. The
second number $N2 is the address from which the block was intended to be
written. The system disables writing to the system blocks unless OPTION 8
has been set.

Panic: out of memory. PC = $N1

Yes, well. A call togetmem, with OPTION 5 turned off, returned an error
message during an attempt to allocate storage for the current directory cache.
Solder in more RAM chips.

Released block N1: already free

During an attempt to deallocate block number N1 on a file system, it was
discovered that the block was already free. This indicates an inconsistency
in the file system. Runfscheck.xrel on the disk immediately to attempt
to repair the disk.

Odd load address

The system was asked to load an.exec file to an odd address (68000 pro-
cessors don’t execute code at odd addresses).

Bad header magic

The magic bytes in the header of an.xrel file were not present. Caused by
a misnamed or corrupted file.

Truncated xrel file

Something is wrong with the relocation table at the end of an.xrel file.

freemem(N1)

Somebody calledfreememwith an argument of N1 (N1 is in hexadecimal).
The addressN1does notcorrespond with thememory manager’s information,
so either N1 was never returned bygetmemor getfmem, or some corruption
of memory has occured.

freemem(0xN1)[OxN2] returns 0xN3

The system attempted to free some memory which it used for internal pur-
poses, andfreememreturned the error value N3. The system calledfreemem
from address N2. The address which was being freed was N1. Caused by
corrupted memory.

Corrupted MRdrivers

Produced at the same time as internal error 500, described above.

Page -92 Programmers Error Messages Appendix B

Booting from /..

Produced when a reset fails to find a suitable boot block on any drive.

Header checksum error

Error in a block device header checksum.

Found blocksize too large

Produced when tape read fails.

Device %s swapped, write still pending

Put the disk back in.

Block %d on %s is unreserved: Volume may be damaged

Runfscheck to correct potential file system damage.

Switch 2 open, using SA: for console

Console is serial port, only produced if disk co-processor card is not present,
and DIP switch is set for serial port as console.

CON SA SB CENT NUL

List of available stream device names.

System closing pathname

A transient program left a file open when it terminated. The system closes
this file and prints a warning message. The autoclosing of files was disabled
by option 7 in Version 3.

 Error Messages Appendix B Programmers Page -93

Index

-v flag, -3

>> in prompt, -29

^D, -62

0, -5
0000 black, -9
02, -4
04, -4

1 warmboot, -17
10 add_ipdvr, -56
10 add_xipdvr, -56
100, -8
100 inst_bdvr, -41
101 coldboot, -17
102 find_bdvr, -41
103 blkread, -42
104 blkwrite, -42
105 open, -43
106 read, -44
107 close, -45
108 creat, -42
109 write, -44
11 loadrel, -17
110 unlink, -45
111 rename, -45
112 filestat, -46
114 interpbec, -48
115 seek, -48
116 tell, -49
117 bdmisc, -49
12 add_opdvr, -56
120 fprintf, -61
121 fputs, -61
122 errmes, -36
123 fgets, -61
124 rdalldir read all directories, -47
126 getromver, -36
13 exit, -18
130 newchset, -68
133 cdmisc, -62
134 symbolic links, -50
14 set_sip, -54
140 initialise CRTC, -88
141 check permissions, -50
141 chkperm, -50
15 set_sop, -54
16 set_vsvec, -18
17 clr_vsvec, -19
18 get_ticks, -19
19 get_cpu, -20

2 getchar, -51
20 set_ser, -54
21 caswraw, -20
22 casrraw, -20
23 getdate, -21
24 setdate, -21
25 abortstat, -22
26 ent1ints, -22
27 dist1ints, -23
28 sine, -23
29 def_fk, -24

3 sgetchar, -52
30 getrand, -24
300, -7
31 set_640, -64
32 set_vdp, -65
320 column mode, -64
33 set_vap, -65
34 set_fgcol, -66
35 set_bgcol, -66
36 set_bdcol, -67
37 set_pal, -67
38 rdch_shape, -67
39 def_chshape, -68
3bff, -5
3c00, -5, -12
3ff, -5
3fff, -5

4 putchar, -52
40 def_wind, -69
400, -5
41 vid_address, -71
42 move_wind, -70
43 rawvid, -72
44 fill_wind, -71
45 scurs_mode, -72
46 mousetrap, -73
47 fill, -77
48 printf, -58
49 sprintf, -60

5 sputchar, -52
50 rset_pel, -78
51 set_pel, -78
53 drawline, -79
54 rread_pel, -79
55 read_pel, -80
56 sgcol, -80
59 rcircle, -80

6 getc, -52

Programmers Manual i

6 getmem, -24
60 circle, -81
600000 pal0, -6
600001 centlatch, -6
600020 pal1, -6
600040 pal2, -6
600060 pal3, -6
600081 daclatch, -6
600101 vidlatch, -6
600181 amuxlatch, -6
601a magic1, -31
61 sdotmode, -81
62 getmem, -24
63 getfmem, -26
64, -8
64 freemem, -26
640 column mode, -64
65 chdir, -39
66 mkdir, -40
67 getfullpath, -40
68 pathcmp, -41
68010, -20
6845 address, -6
69 floadrel, -17

7 sgetc, -53
70 anipsel, -83
700000 sccbcont, -6
700002 sccbdata, -6
700004 sccacont, -6
700006 sccadata, -6
700081 iport, -6
700100 viabase, -6
700180 crtcaddr, -6
700182 crtcdata, -6
71 anopsel, -83
72 anopdis, -84
73 adc, -84
74 dac, -84
75 set_led, -85
76 freetone, -85
77 fttime, -86
78 rdiport, -86
78000 video page, -63
79 rdbiport, -86

8 putc, -53
80 setstvec, -27
81 new_cbuf, -57
82 prog_sio, -87
83 gettdstr, -21
84 nledit, -27
86 ledit, -28
87 iexec, -29
88 exec, -30
89 callmrd, -30

9 sputchr, -53
90 set_kvec, -31
91 ciparse, -32
92 qsort, -33
93 sliceargs, -33
94 cpuspeed, -34
95 find_driver, -55
96 get_dvrlist, -57
97 exaca, -34
98 execv, -35
99 option, -35

a000 + call, -14
abortstat 25, -22
absolute load, -3
adc 73, -84
add_ipdvr 10, -56
add_opdvr 12, -56
add_xipdvr 10, -56
addr, -17, -26, -42, -57
address of video 41, -71
AI0 to AI5, -83
ak_alt alt key register, -7
ak_capslock register, -7
ak_ctrl control key shadow, -7
ak_numlock, -7
ak_shift shift key register, -7
allocate memory 62, -24
alt c 25, -22
alter call vector 80, -27
alter cursor 45, -72
alval 306, -7
amplifier, -84
amuxlatch 600181, -6
analogue conversion 73, -84
analogue converter, -7
analogue input 70, -83
analogue multiplexor latch, -6
analogue output 71, -83
analogue output disable 72, -84
AND pixels, -82
angle, -23
anipsel 70, -83
anopdis 72, -84
anopsel, -85
anopsel 71, -83
area fill 47, -77
arg, -31
arg1, -49
args, -35
argstr, -3, -4
argtype, -4
argument substitution, -2
argv, -33, -34
argv / argc, -4
argval, -4

Programmers Manual ii

ASCII c, -59
autovectored interrupts, -7, -8

background colour 35, -66
base, -33
bdmisc 117, -49
bdnum, -49
bgmask, -72
binary b, -59
binary files, -11
bit 31 set, -4
bit 7 inversion dac, -24
bitmap, -10
blk, -42
blkread 103, -42
blkwrite 104, -42
block driver install 100, -41
block length, -20
block size, -27
boot block, -5, -10
boot device, -12
boot sequence, -11
border colour 36, -67
borders video latch, -9
br, -41
brightness on monitor, -9
bs, -41
bss, -10
buf, -20, -42, -44, -46 - -48, -60, -61, -70
bufer, -21
buffer, -21
buffer size 81, -57
bw, -41

callmrd 89, -30
callval, -18
calname, -15
cassette read 22, -20
cassette write 21, -20
cassraw 22, -20
caswraw 21, -20
cb1 via 108, -8
cdmisc 133, -62
cent:, -55
centlatch 600001, -6
centronics latch, -6, -7
ch, -52, -53, -72
chaining programs, -2
chan, -87
change call vector 80, -27
change cursor 45, -72
change directory 65, -39
change filename 111, -45
character buffer 81, -57
character calls, -51
character device driver, -57

character devices 133, -62
character output 4, -52
character set 130, -68
character shape 38, -67
charno, -67, -68
chdir 65, -39
check permissions 141, -50
chkperm 141, -50
circle 59, -80
circle 60, -81
clock speed 94, -34
close 107, -45
clparse 91, -32
clr_vsvec 17, -19
clval 302, -7
cmd, -30
code, -49
col, -67, -71, -72
coldboot 0, -17
colmask, -66
colour, -80
colour foreground 34, -65
colour map, -9
colour palette, -64
command 88, -30
command line arguments, -2
command line errors, -3
compar, -33
compare pahnames 68, -41
con:, -55
control key shadow, -7
contstr, -58, -60, -61
count, -19
cpu clock 94, -34
cpu type 19, -19
cpuspeed 94, -34
creat, -53
creat 108, -42
crtc address register, -6
crtc initialisation, -11
CRTC initialise 140, -88
crtcaddr 700180, -6
crtcdata 700182, -6
cursor alter 45, -72
cursor control escape sequences, -76
cvttdstr time date, -22

dac 74, -84
dac bit 7 inverted, -24
dac converter latch, -6, -7
daclatch 600081, -6
data formatting 49, -60
date time 23, -21
decimal d, -59
decimal unsigned u, -59
def_chshape 39, -68

Programmers Manual iii

def_fk 29, -24
def_wind, -65
def_wind 40, -69
define function key, -24
defptr, -68
delete file 110, -45
dev, -42, -46, -57
diectory read 113, -46
digital conversion 74, -84
dip switches, -10
direct write, -7
directory entry, -46
disable analogue out 72, -84
disk files, -37
dist1ints, -86
dist1ints 27, -23
dlval 304, -7
dot mode 61, -81
dp, -47
draw a point 50, -78
draw line 52, -79
draw line 53, -79
draw pixels, -81
drawline 53, -79

ec, -36, -48
enable, -72
end of file, -51, -62
ent1ints, -85
ent1ints 26, -22
entry point, -3
entry points, -1
EOF, -51, -62
errmes 122, -36
error code 114, -48
error messages, -3
error messages output, -59
error number 122, -36
errors in command, -3
escape codes, -74
escape sequences cursor control, -76
evaluate arguments 91, -32
exec 88, -30
exec files, -3
exec fle problems, -11
execa 97, -34
execute argument 97, -34
execv 98, -35
exit 13, -18
expand pathname 67, -40
external ROM, -11

fgets 123, -61
fgmask, -72
file close 107, -45
file i/o calls, -37

file open 105, -43
file permissions 141, -50
file position 116, -49
file rename 111, -45
file seek 115, -48
file size maximum, -37
file status 112, -46
files interlock, -39
filestat 112, -46
fill_wind 44, -71
fill 47, -77
fill window 44, -71
find_bdvr, -47
find_bdvr 102, -41
find_driver, -53
find_driver 95, -55
Fitzhardinge, -77
fknum, -24
floadrel 69, -17
foreground colour 34, -65
format data 49, -60
formatted output 48, -58
fprintf 120, -61
fputs 121, -61
free memory, -11
freemem, -41
freemem 64, -26
freetone, -22
freetone 76, -85
fttime, -86
fttime 77, -86
function key 29, -24
function key read, -24

get_cpu 19, -19
get_dvrlist 96, -57
get_ticks 18, -19
getc, -51, -54
getc 6, -52
getchar, -54
getchar 2, -51
getdate 23, -21
getfmem 63, -26
getfullpath 67, -40
getmem, -40
getmem 62, -24
getrand 30, -24
getromver 126, -36
gettdstr 83, -21
graphics colour 56, -80
graphics system calls, -77

handle, -17, -37, -43 - -45, -48, -49, -52 -
-54, -61
hardware scrolling, -63
heap, -11

Programmers Manual iv

hexadecimal x, -59

i/o address, -6
iexec, -12
iexec 87, -29
inbuilt commands, -2
initialise CRTC 140, -88
input port, -6
input port read 78, -86
inst_bdvr 100, -41
install block driver 100, -41
interactive prompts, -2
interlock files, -39
interpbec, -36, -44
interpbec 114, -48
interpret arguments 91, -32
interrupt autovectors, -7
interrupt priorities, -8
interrupt vertical sync 16, -18
ioro, -55, -57
ipnum, -83
iport 700081, -6
ISR, -8
ivec, -56

Jeremy Fitzhardinge, -77
joystick, -83
joystick buttons, -87
JSR, -4

keyboard scan 90, -31

leader, -20
led 75, -85
ledit 86, -28
len, -28, -57
length, -20, -85
level 1, -8
level 2 via irq, -8
level 3 scc irq, -8
level 4 cassette, -8
line a trap, -14
line draw 52, -79
line draw 53, -79
line edit 86, -27, -28
line input 123, -61
load address, -3
load program 69, -17
loader relocating 11, -17
loadrel 11, -17
locate block driver 102, -41
long integers, -14
loudspeaker, -84

magic1 601a, -31
mask, -72

maxhunk, -20
memmode, -18, -40
memory allocation, -5, -10, -26
memory layout, -10
memory manager, -5, -11
memory map, -6
memory resident driver 89, -30
memory resident drivers, -10
misc block function 117, -49
mkdir 66, -40
mode, -24, -26, -43, -48, -65, -70, -81
monitor brightness, -9
mouse 46, -73
mousetrap 46, -73
move_wind 42, -70
move window 42, -70
MRD, -10
MRD 89, -30
mrdno, -30
mrdrivers, -10, -31
multiblock I/O 119, -50
multiuser operation, -30
music generation, -24
music play 76, -85

name, -41, -55 - -57
nargs, -4
nbytes, -24, -26, -44
ndirblks, -40
nel, -33
new_cbuf 81, -57
new character set 130, -68
new directory 66, -40
new file 108, -42
newchset 130, -68
newname, -45
nledit 86, -27
null-terminated line, -62
null terminated strings, -14

octal o, -59
offset, -48
oldpath, -45
open, -53
open 105, -43
opnum, -35, -83
option 99, -35
OR pixels, -81
outpur string 121, -61
output analogue 71, -83
output character 4, -52
ovec, -56

p1 p2 etc, -58, -60
page, -65
pal0 600000, -6

Programmers Manual v

pal1 600020, -6
pal2 600040, -6
pal3 600060, -6
palette, -9, -64
palette entry, -7
palette entry 37, -67
palpos, -67
palval0 308, -7
palval1 30a, -7
palval2 30c, -7
palval3 30e, -7
parameters, -14
pargs, -32
passval, -56, -57
path, -18, -35, -39, -40
path1, -41
path2, -41
pathcmp 68, -41
pathname, -42, -43, -45, -46
pathname expansion 67, -40
pd, -47
pixel draw, -81
play a note 76, -85
plot a point 50, -78
pos, -47
position in file 116, -49
potentiometer, -83
preload, -22, -85
print a byte, -14, -15
printf, -14
printf 48, -58
process commands 93, -33
processdir, -47
prog_sio 82, -87
program function key, -24
program load 69, -17
program serial port 82, -87
prompt, -29
prompt with >>, -29
ptr, -68
ptype, -32
putc, -63
putc 8, -53
putchar 4, -52
pv, -41
pval, -32

qsort 92, -33
quicksort, -33

radius, -80, -81
ram disk, -10
random seed 30, -24
rate, -18, -72
rawvid 43, -72
rcircle 59, -80

rdalldir 124 read all directories, -47
rdbiport 79, -86
rdch_shape 38, -67
rdiport 78, -86
read_pel 55, -80
read 106, -44
read all directories rdalldir 12, -47
read block 103, -42
read cassette 22, -20
read character 2, -51
read function key, -24
read input port 78, -86
read pixels, -82
readdir 113, -46
readtimeinc time date, -22
redirections, -39
register file colour, -64
reinitialise 1616/OS, -17
release memory 64, -26
relocatable, -4
relocating loader 11, -17
rename 111, -45
reset, -11
reset warmboot 1, -17
return value, -13
retval, -18
ROM, -11
rom version 126, -36
row, -72
rread_pel 54, -79
rset_pel 50, -78
RTS, -4

sa:, -55
sb:, -55
scan keyboard 90, -31
scc control register, -6
scc data register, -6
scc irq level 3, -8
scc receive 140, -8
sccacont 700004, -6
sccadata 700006, -6
sccbcont 700000, -6
sccbdata 700002, -6
scurs_mode 45, -72
sdotmode 61, -81
second user, -30
seed random 30, -24
seek 115, -48
select analogue input 70, -83
sequential dir read 113, -46
serial port 82, -87
set_640 31, -64
set_bdcol 36, -67
set_bgcol 35, -66
set_fgcol 34, -65

Programmers Manual vi

set_kvec 90, -31
set_led 75, -85
set_pal, -64
set_pal 37, -67
set_pel 51, -78
set_ser 20, -54
set_sop 15, -54
set_vap 33, -65
set_vdp 32, -65
set_vsvec 16, -18
setdate 24, -21
setsip 14, -54
setstvec 80, -27
settimeinc time date, -22
setting, -35
sgbgcol, -80
sgcol 56, -80
sgetc 7, -53
sgetchar 3, -52
sgtexture, -80
shadow registers, -7
shift register via 110, -8
signed decimal d, -59
sine 28, -23
sliceargs 93, -33
sort 92, -33
sound generation, -23
sound play 76, -85
spawning, -11
spptr, -87
sprintf 49, -60
sputchar 5, -52
sputchr 9, -53
stack, -10
stack overruns, -11
stack pointer, -11
stack pointer initialised, -11
standard error, -39
standard error 20, -54
standard input, -38
standard input 14, -54
standard output, -38
standard output 15, -54
start, -20
status, -52, -53
status of file 112, -46
status of input 3, -52
status of output 5, -52
statvec, -56
storage space 62, -24
str, -24, -28, -30, -33
stream, -37
stream handle, -42
stream number, -55
stream read 106, -44
stream write 109, -44

streams, -51
string output 121, -61
string s, -59
supervisor mode, -2
symbolic links 134, -50
syscall, -13, -15
syscalls, -1
system call, -13, -15
system calls, -1
system error outputs, -59

table, -85
tablen, -85
tell 116, -49
terminal video codes, -74
terminate program 13, -18
texture fill, -78
ticks 18, -19
time accumulator, -21
time date 23, -21
timing problem, -7
transient programs, -2
trap 7, -13
trap line a, -14
trapno, -73
type, -42

unlink 110, -45
unsigned decimal u, -59
usage message, -3
user mode, -2
user port inputs, -83

v flag, -3
val, -77, -78, -84, -85
vec, -18, -22, -31
vecnum, -27
vector, -73
vector table, -10
vectors, -5
verbose flag, -3
version number 126, -36
vertical interrupt 16, -18
vertical sync interrupt, -87
via base address, -6
via cb1 108, -8
via cb2 10c, -8
via irq level 2, -8
via shift register 110, -8
via timer 100, -8
via timer 2 104, -8
via timer int 26, -22
viabase 700100, -6
vid_address 41, -71
video access page 33, -65
video colours, -9

Programmers Manual vii

video escape codes, -74
video initialisation, -11
video initialise 140, -88
video latch, -6, -7
video latch borders, -9
video output, -63
video page, -10
video page 32, -65
video pages, -63
video palette latch, -6
video window 40, -69
vidlatch 600101, -6
vlval 300, -7
vnum, -19

warmboot 1, -17
wcexp, -33
whereto, -27
width, -33
window 40, -69
windows, -63
windptr, -69
write 109, -44
write block 104, -42
write cassette 21, -20
write pixels, -81

XOR pixels, -82
xrel files, -4

Programmers Manual viii

Table of Contents

1 Programming under 1616/OS v4 ... -1
Transient programs ... -2

Transient program conventions ... -2
Transient program command line arguments -3
Transient program memory model .. -5
I/O addresses ... -6
Shadow registers ... -7
Simulated interrupt vectors ... -7
Interrupt priorities ... -8
Video colours .. -9
Memory Layout ... -10
EXEC file problems .. -11
Boot Sequence ... -11

2 The System Calls .. -13
Broad categories ... -13

The system call mechanism ... -13
The Line A Trap .. -14
Format of the system call documentation -15

3 System Control Calls ... -17
Introduction .. -17

Reinitialise 1616/OS - coldboot ... -17
Reinitialise 1616/OS - warmboot ... -17
Relocating loader - loadrel .. -17
Load a program - floadrel .. -17
Terminate a transient program - exit ... -18
Install a vertical sync interrupt routine - set_vsvec -18
Remove a vertical sync interrupt routine - clr_vsvec -19
Get number of ticks since system startup - get_ticks -19
Determine the current CPU type - get_cpu -19
Raw cassette block write - caswraw .. -20
Raw cassette block read - casrraw ... -20
Get system time date - getdate .. -21
Set system time date - setdate ... -21
Get time/date string - gettdstr .. -21
Get ALT-C status - abortstat ... -22
Enable VIA timer1 interrupts - ent1ints .. -22
Disable VIA timer1 interrupts - dist1ints .. -23
Calculate a sine - sine .. -23
Define a function key - def_fk .. -24
Get random number seed - getrand ... -24
Request storage from system - getmem .. -24
Allocate memory at address - getfmem ... -26
Release allocated memory - freemem ... -26

Programmers Manual i

Alter/install a system call vector - setstvec -27
Line editor with length - nledit .. -27
Line editor for dial up access - fnledit ... -28
Line editor - ledit ... -28
Indefinitely call 1616/OS command executor - iexec -29
Execute a 1616/OS command - exec ... -30
Call a memory resident driver - callmrd ... -30
Alter keyboard scan code vector - set_kvec -31
Interpret and evaluate arguments - clparse -32
Sort things in memory - qsort .. -33
Process command strings - sliceargs ... -33
Find CPU clock speed - cpuspeed ... -34
Execute argument array - execa .. -34
Execute command with arguments - execv -35
Set/read a system option setting - option .. -35
Error number interpreter - errmes ... -36
Return 1616/OS version - getromver ... -36

4 File and Block I/O Calls .. -37
Introduction .. -37
File control block .. -38
Standard input, output and error ... -38
File system interlock .. -39
File and block I/O calls .. -39

Change current directory - chdir ... -39
Make a new directory - mkdir ... -40
Expand out a pathname - getfullpath ... -40
Compare pathnames - pathcmp ... -41
Install a block device driver - inst_bdvr .. -41
Locate a block device driver - find_bdvr .. -41
Raw block read - blkread .. -42
Raw block write - blkwrite .. -42
Create for output - creat .. -42
Prepare for input - open ... -43
Read from a stream - read ... -44
Write to a stream - write .. -44
Close a disk file - close ... -45
Delete a disk file or directory - unlink .. -45
Rename a disk file - rename .. -45
Get the status of a disk file/directory - filestat -46
Sequentially read disk directory - readdir -46
Read all directory entries - rdalldir ... -47
Interpret a block device error code - interpbec -48
Seek to a new disk file position - seek .. -48
Return current disk file position - tell ... -49
Call block driver miscellaneous function - bdmisc -49
Manipulate directories - processdir ... -49
Multiblock I/O - multiblkio ... -50

Programmers Manual ii

Symbolic links ... -50
Check permissions - chkperm ... -50

5 Character I/O Calls .. -51
Introduction .. -51

Read one character from standard input - getchar -51
Get status of standard input device - sgetchar -52
Put a character to standard output - putchar -52
Get status of standard output device - sputchar -52
Get a character from a stream - getc ... -52
Get status of an input stream - sgetc ... -53
Put a character to an output stream - putc -53
Get status of an output stream - sputc ... -53
Assign standard input - set_sip .. -54
Assign standard output - set_sop ... -54
Assign standard error - set_ser .. -54
Locate a character device driver - find_driver -55
Install an input character device driver - add_ipdvr -56
Install an extended input character device driver - add_xipdvr -56
Install an output character device driver - add_opdvr -56
Locate the character device driver table - get_dvrlist -57
Vary buffer size for a character device - new_cbuf -57
Formatted output - printf ... -58
Data formatting - sprintf .. -60
Formatted output to a stream - fprintf ... -61
String output to a character stream - fputs -61
Line input from a character stream - fgets -61
Character device miscellaneous - cdmisc .. -62

6 Video Output Calls .. -63
Introduction .. -63

640 column mode: ... -64
320 column mode .. -64
Set/clear 640 column mode - set_640 ... -64
Set the video display page - set_vdp ... -65
Set the video software access page - set_vap -65
Set the video text foreground colour mask - set_fgcol -65
Set the video text background colour mask - set_bgcol -66
Set the video border colour - set_bdcol ... -67
Set a palette entry - set_pal ... -67
Get a pointer to a character shape definition - rdch_shape -67
Redefine a character shape - def_chshape -68
Select a new video character set - newchset -68
Define a video window - def_wind ... -69
Move video window contents - move_wind -70
Fill the video window - fill_wind .. -71
Get physical video addresses - vid_address -71
Low level video character drawing - rawvid -72

Programmers Manual iii

Alter cursor mode - scurs_mode ... -72
Install mouse driver intercept - mousetrap -73

Video driver escape codes .. -74
Control codes ... -74
Escape sequences .. -75

7 Graphics System Calls ... -77
Introduction .. -77

Area fill routine - fill ... -77
Raw graphics point draw - rset_pel ... -78
Windowed graphics point draw - set_pel .. -78
Raw graphics line draw - rline .. -79
Windowed graphics line draw - drawline -79
Raw pixel read - rread_pel .. -79
Windowed pixel read - read_pel ... -80
Set graphics colour - sgcol .. -80
Set graphics background colour - sgbgcol -80
Set graphics line texture mask - sgtexture -80
Raw circle draw - rcircle ... -80
Windowed circle draw - circle .. -81
Set graphics dot draw mode - sdotmode ... -81

8 Hardware Control Calls .. -83
Introduction .. -83

Select an analogue input - anipsel ... -83
Select an analogue output - anopsel .. -83
Disable analogue outputs - anopdis ... -84
Perform analogue to digital conversion - adc -84
Perform digital to analogue conversion - dac -84
Set/clear LED - set_led ... -85
Play a waveform - freetone ... -85
Return time left for freetone completion - fttime -86
Read input port - rdiport .. -86
Read time-accumulated input port - rdbiport -86
Reprogram a serial port - prog_sio .. -87
CRTC initialise - crtc_init ... -88

9 Short Form Call List Appendix A ... -89

10 Error Messages Appendix B .. -89
Block and memory errors .. -89
Internal errors .. -90

Internal error 1 and 2 ... -91
Internal error 3, 4, 5 and 6 ... -91
Internal error 7 ... -91
Internal error 10 ... -91
Internal error 100, 101 and 102 ... -91
Internal error 400 ... -91

Programmers Manual iv

Internal error 500 ... -91
Warning messages .. -91

Suppressed write to block N1 on DEV [N2] -92
Panic: out of memory. PC = $N1 .. -92
Released block N1: already free .. -92
Odd load address ... -92
Bad header magic .. -92
Truncated xrel file ... -92
freemem(N1) ... -92
freemem(0xN1)[OxN2] returns 0xN3 ... -92
Corrupted MRdrivers .. -92
Booting from /.. ... -93
Header checksum error .. -93
Found blocksize too large ... -93
Device %s swapped, write still pending .. -93
Block %d on %s is unreserved: Volume may be damaged -93
Switch 2 open, using SA: for console ... -93
CON SA SB CENT NUL .. -93
System closing pathname .. -93

Programmers Manual v

