
Bellcore MGR
Window Manager

Version 0.112
August, 1993

Applix 1616 microcomputer project
Applix pty ltd

Bellcore MGR Window Manager

Even though Applix has tested the software and reviewed the documentation,
Applixmakesno warrantyor representation, either expressor implied, with respect
to software, its quality, performance, merchantability, or fitness for a particular
purpose. As a result thissoftware is sold "as is,"andyou thepurchaser areassuming
the entire risk as to its quality and performance.

In no event will Applix be liable for direct, indirect, special, incidental, or
consequential damages resulting from any defect in the software or its docu-
mentation.

The Applix portions of this manual were written by Andrew Morton
Additional introductory and tutorial material by Eric Lindsay

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
324 King Georges Road
Beverly Hills 2209
N.S.W. Australia
(02) 758 2688

 Copyright 1989, 1990 Applix Pty Limited. All Rights Reserved.
 Copyright 1988, Bellcore. All Rights Reserved.
Revised material Copyright 1990 Eric Lindsay

ISBN 0 947341 ?? ?

MC68000 is a trademark of Motorola Inc.

1
Bringing up MGR

Bringing up the Bellcore window manager MGR on the Applix 1616, by Andrew
Morton, 28 Sept 1989.

To run mgr, a few ASSIGNments, files, and programs must first be set up, as
detailed below.

ROM version
mgr is supported on 1616/OS version 4.1a and higher.If you haven’t updated to
at least this version, then it won’t work.For best results, you also require more than
a half megabyte of memory, although small tasks will run without memory
expansion.

ASSIGNments
The path/mgr must be assigned to point to the directory under which the mgr font,
icon and library directories must be found. Specifically, the following directories
must be available:

/mgr/icon Icons

/mgr/font-16 Fonts

/mgr/lib Libraries & include files for mgr C language application
development.

Environment
mgr and a number of its application programs expect to be able to read a file called
/usr/lib/environ . Assignments must be set up so that this file is readable. Assign
/usr or /usr/lib , rather than assigning all of/usr/lib/environ . This is because
other applications expect to find files under/usr/lib .

The environment file consists of lines of the form:

THINGY=setting

with no white space around the ‘=’ sign. Upper and lower case is significant in
this file. The following environment settings must be defined in the environment
file for mgr to work:

MAX_X
The width of the video display in pixels minus one.

MAX_Y
The height of the video display in pixels minus one.

 Bringing up MGR mgr windows 1-1

WIDE
The width of the video display in pixels.

HIGH
The height of the video display in pixels.

HOME
This should be assigned to/mgr .

MGRSCREENINIT
Must be set to the name of a program which initialises the video display hardware
for WIDE x HIGH pixels. mgr must be able to EXEC this program. This can be
a multiple assignment, such as
MGRSCREENINIT=serial a .120 0 8 8 0 0!GO_1024

MGRCLEANUP
Set to the name of a program which mgr EXECs before exitting: can be used for
restoring the video mode. Other optional settings in the environment file are:

MICROSOFTMOUSE
Normally mgr expects a three button 5 byte packet PC-systems mouse. If
MICROSOFTMOUSE is defined then the mouse driver expects a two button 3
byte packet microsoft mouse. mgr requires a three button mouse for some
applications,so the microsoft mousedriver uses thecombined press of both buttons
to simulate the third (rightmost) button on the PC-systems mouse.

If you are using a microsoft mouse program set the serial port in the following
manner:
serial a .120 0 7 7 0 0

The PC-systems mice use the following settings:
serial a .120 0 8 8 0 0

MOUSEXSCALE, MOUSEYSCALE
Multipliers for mouse movements. If not set these default to 100, which is a 1:1
multiplier. Increase these settings to increase the mouse sensitivity.

NONLINEARMOUSE
If this is present in the environment file, mgr uses a non-linear scaling algorithm
which moves the mouse further when it is moving faster, which takes some getting
used to, but reduces large mouse motions, whilst permitting accurate work. The
MOUSEXSCALE and MOUSEYSCALE settings still take effect when non-linear
mode is selected.

JOYSTICK
If present in the file, this causes mgr to use the joystick for mouse positioning.
Doesn’t work very well.

DEBUG
If present in the file, this setting causes most of the mgr application programs to
produce debug output on their standard error.

The programsetenv.xrel is supplied for altering the environment file. Usage is

1-2 mgr windows Bringing up MGR

setenv [THINGY]
setenv [THINGY=setting]

The first mode removes the definition of THINGY from/usr/lib/environ . The
second gives it a new setting.

Files
There are a number of other special files for mgr:

/mgr/.mgrc

The mgr startup file: see mgr.man for details.

/mgr/font-16/.mgrc

The mgr font startup file: see mgr.man for details.

 Bringing up MGR mgr windows 1-3

2
Invoking mgr

Usage is

mgr [flags]

the flags are as follows:

-c
Run the Bellcore copyright program on startup.

-dSS
Set debug mode, using chars in SS as flags. As supplied mgr has been
compiled with debugging disabled.

-x
Do not run a startup file. See mgr.man.

-m filename
Use the file ‘filename’ as the source of mouse input. Presumably sa: or
sb:, mgr expects to see a 3 button 5 byte/packet mouse.

-s filename
Get startup commands from ‘filename’ instead of from/mgr/.mgrc on
startup.

-F filename
Use ‘filename’ as the default mgr font, instead of the inbuilt one. Use a
full pathname, such as
mgr -F /mgr/font-16/oldeng.fnt

-f dirname
Look in the specified directory for fonts, rather than/mgr/font-16 .

-i dirname
Look in the specified directory for icons, rather than/mgr/icon .

Running under mgr
Basically everything goes as per the mgr documentation. The system menu
(activated by the left button) has been modified so that it displays the name of the
character device associated with the window which the button is clicked on. This
has been done so that the user can direct the output of a program to that character
device and have it come out on the appropriate window.

The ‘buckey’ keys are obtained by holding down ‘ALT’ whilst typing a key. The
ALT-N sequence has been altered to ALT-A.

If you are running 1616/OS V4.1a, use ALT-O in place of the usual ALT-S to
suspend output in the current window.

2-1 mgr windows Invoking mgr

 Invoking mgr mgr windows 2-2

3
Writing mgr applications

How to do it, from Andrew Morton, 28 Sept 1989

The mgr user manual comprehensively describes how to write programs which
use mgr’s features. The manual is quite complicated and very much written from
the standpoint of the C language.

Because mgr’s communications with client programs are performed entirely via
standard input and standard output, mgr applications can be written in ANY lan-
guage which has available a getchar function and a putchar one. In fact an mgr
program can run on another machine which is not running mgr: all it need do is
send up the appropriate escape sequences and read back and interpret the results.

The mgr documantation needs to be reworked in a more language independent
manner, documenting the raw escape sequences, rather than the C macro libraries
(unfortunately, this isn’t real high on the priority list).

The basic format of an MGR escape sequence is

ESCC
ESCnnC
ESCnn,nnC
ESCnn,nn,C
etc.

where ESC is the escape character, ‘nn’ is a decimal number (a sequence of digits
in the range ‘0’ to ‘9’) and C is a single character. The commas are commas.

If a variable length string is to be uploaded (such as with a menu upload) the length
of the string is coded as a decimal number and then that number of characters are
sent.

All of mgr’s terminal emulation codes follow this scheme also. I have added a
TVI925/applix 1616 terminal emulator front end to mgr which translates the
normal 1616 escape sequences coming from the application programs into mgr
sequences. Most of the 1616 escape codes are supported. mgr patches the
DEF_WIND system call so that it can provide the correct window dimensions to
those programs (specifically EDIT) which use DEF_WIND to read the current
1616 video driver window dimensions.

No attempt has been made to translate the 1616 graphics system calls into mgr
escape sequences: the overhead of encoding and decoding the escape sequences
greatly slow the graphics performance. mgr is not really a graphics program; it is
an enhancement to the command line shell. Use the 1616 SSEG! video graphics
package for serious graphics work.

3-1 mgr windows Writing mgr applications

Applix’s Dr Doc word processor for the 1616 has been modified so as to use mgr’s
facilities for implementation of pull-down menus, scroll bars, point-and-click
cursor positioning, block marking via the mouse, etc. The source code for the mgr
part of Dr Doc is included on the Dr Doc distribution disk, along with the whole
editor in linkable form. This is a good demonstration of how an mgr interface can
be tacked onto an existing application.

 Writing mgr applications mgr windows 3-2

4
Installation of mgr

Installation of the Bellcore window manager mgr in the Applix 1616, by Andrew
Morton, 28 September, 1989

The window manager mgr was orginally designed to run on Sun workstations
under SunOS, an enhanced implementation of Unix. The 1616 version retains
practically all the functionality of the original. There are, in fact, a few 1616
specific enhancements.

Suns have large video monitors: 1152(W) pixels by 912(H) pixels. This sort of
resolution is needed to run a windowing shell such as mgr. To get a reasonable
resolution from the 1616’s inbuilt video mgr requires that the 30MHz video cir-
cuitry modification be done. This modification involves the replacemant of an IC
on the 1616 motherboard (U3: 74LS298) with a 20 pin 16L8B PAL. The PAL
preserves the functions of the 298, as well as permitting the 30MHz 1 bit/pixel
mode.

Installation
Remove U3. Put the PAL in U3’s socket with pins 1, 2, 19 and 20 hanging out.
Solder 3 pieces of wire onto the pins of U3 to make the following connections:

U3 pin 1 to U3 pin 12
U3 pin 2 to U27 (6845) pin 17
U3 pin 20 to +5.

The +5 connection is best done to the plate-through hole in the wide trace leading
to the collector of Q1, between R9 and U5.

That’s it! The connection to pin 1 is to permit the PAL to determine whether to
display the border colours or the display colours. Pin 17 of the 6845 is an unused
address line output; it is used here to select the video mode: setting the start address
register (register 12) in the 6845 to $20 selects 30MHz mode; setting it to zero
selects 15MHz mode.

Fixing horizontal sync
The HSYNC signal (pin 8 of the video connector) is in fact CSYNC in the 1616;
that is, it is HSYNC ORed with VSYNC, rather the HSYNC on its own. This is
a design flaw. Some monitors (especially when you push them) will exhibit tearing
or complete loss of sync because of the loss of horizontal sync during vertical sync.
It is therefore recommended that you perfrom the following modification, which
brings the true horizontal sync signal out, without affecting the composite video
signal.

Cut the track leading to pin 11 of U2.
Connect pin 11 of U2 to pin 39 of U27.

4-1 mgr windows Installation of mgr

This modification significantly improves the appearance of Conal Walsh’s EGA
video mode software on multisync monitors, and probably makes even more
difference on straight EGA and dual-scan monitors.

Inverting vertical sync
Whenmgr is used inhigh resolution modes suchas 960x512some ‘smart’ monitors
will detect the new line rate and will decide that the vertical sync signal should be
inverted. If you are experiencing problems with either a dual-sync or multi-sync
monitor it is quite possible that vsync needs inversion.A simple way to invert vsync
is to use the spare inverter at pin 1 of U54.

Cut the track going to U54 pin 1 on the solder side of the 1616 PCB and run a wire
from U54 pin 1 to vsync (U27 pin 40).

Pull pin 8 of U2 out of its IC socket and connect it to inverted vsync (U54 pin 2).

Of course this scheme is not software switchable. It can be improved by taking
both vsync (U27 pin 40) and inverted vsync (U54 pin 2, as above) to either side
of a 3 pin strapping block.

Connect the middle pin of the strapping block to U2 pin 8, as above. The sync
polarity can now be swapped using a shorting shunt on the 3 way strap.

Thebest wayof performing thesync inversion is to make it software programmable
by adding another IC to the board. An exclusive-OR gate does the job, but a single
output bit needs to be found for doing the selection. The most significant bit of
the border colour latch is an appropriate signal to use, as border colours brighter
than 7 are unlikely to be used. Perform the following steps:

1) Adding the XOR gate

Put a 74LS86 exclusive-or gate in at the spare IC position U65. Align it with pin
1 of the 20 way socket, so pin 14 of the 74LS86 goes into pin 20 of the socket.
Connect pin 7 of the 74LS86 to pin 10 of the socket.

2) The select bit

Remove U16 from its socket, bend out pin 6 and replace the chip. This pin is BC3,
the most significant bit of the display border colour. Run a wire from the floating
pin 6 to pin 1 of the new 74LS86.

3) Restoring the border colours

As bit 3 of the border colour is now used for something else we must do something
about the border colours: connect the BC3 signal to ground by running a wire
between pins 6 and 10 of U16’s socket, on the solder side of the PCB.

4) Connecting up the XOR gate

Run a wire from pin 40 of U27 (vsync) to pin 2 of the 74LS86. Remove U2 from
its socket, bend out pin 8 and replace U2 in the socket. Connect a wire from the
floating pin 8 of U2 to pin 3 of the 74LS86.

 Installation of mgr mgr windows 4-2

Normally border colours in the range of 8-15 are not used, so BC3 will be low.
This means that vsync is passed through the 74LS86 unchanged. To invert vsync
you must add 8 to the current border colour. From assembly language:

move.l #36,d0 * set_bdcol system call
clr.l d1
move.b $301,d1 * video latch shadow register
lsr.b #4,d1 * Get border colour bits
and.b #7,d1 * Preserve current setting
* Leave the next line out for normal sync
or.b #8,d1 * Set BC3
trap #7 * New colour

From the command line:

syscall .36 8

Programming
In 30MHz mode the pallette registers must have the following settings:

Pallette entry Setting

0 0
1 3
2 12
3 15

The whole object of the exercise is to persuade your monitor to produce the
maximum number of pixels. This is inevitably done by experimentation. Look
at the many different initialisation programs supplied, pick and/or modify one to
you and your monitor’s taste.

4-3 mgr windows Installation of mgr

5
mgr - manage windows on a SUN Workstation

Synopsis
mgr [-ffont_dir] [-iicon_dir] [-sstartup_file] [-n] [-x] [-v] [

-V] [-Fdefault_font] { [-dlist] [-m mouse_device] [-Bwin-
dow_buff] [-bshell_buff] [-Ppoll_interval] [-Sscreen] }

Description
Mgr is a window manager for the SUN workstation, now ported to the Applix
1616 by Andrew Morton.

It permits the creation and manipulation of overlapping windows, with different
processes running in each window. The user controls the function and layout of
the display with a mouse. Windows are updated asynchronously even if they are
partially (or completely) obscured by other windows, although obscured windows
may arrange to have their output suspended until the window is uncovered.

Each window runs a terminal emulator which, in addition to the functions normally
required to run screen oriented programs, such as vi, provides primitives for
drawing lines, doing bit-blts, and performing administrative functions such as
reshaping the window, changing fonts, or starting a new window. Details of of
the terminal emulator operation are described in the MGR - C Language Appli-
cation Interface.

The useful command line options are:

-ffont_dir
Use font_dir as the directory to find the fonts, instead of/usr/mgr/font .

-iicon_dir
Use icon_dir as the directory to find the icons, instead of/usr/mgr/icon .

-sstartup_file
Use startup file instead of$HOME/.mgrc to obtain initial configuration
information. See the description of startup commands below.

-n Bitmap files are created using the new, portable bitmap format. The
portable format has an 8 byte header, and each row is padded to a byte
boundary. Ordinarily theold (6byte)bitmapheader isproduced, followed
by the bitmap data with each line padded to an 16 bit boundary.
Eventually, the sense of -n will change, when all of the programs that
were written in the old format are changed.

-x Don’t use a startup file upon execution.

-v Don’t run MGR at all. Print the current version number and creation date
instead.

 mgr - manage windows on a SUN Workstation mgr windows 5-1

-V Just like -v above only prints the compile flags used to make MGR and
its home directory.

-Fdefault_font
Use default_font as the pathname of a MGR font to be used in place of
MGR’s builtin default font.

The rest of the options are:

-dlist
Print debugging information on stderr. list is one or more of the char-
acters: *ABCEFMNPSUbcdefilmnopsuwxy each of which turns on
debugging output for some aspect of MGR.

-mmouse_device
Use mouse_device instead of/dev/mouse to obtain mouse coordinates.

-Sscreen
Use screen instead of/dev/bwtwo0 as the display device.

-Bwin_buff
Process characters to a window in up to win_buff byte chunks (the default
is 40).

-bshell_buff
Buffer up to shell_buff bytes of output from a program before writing it
on a window (the default is 256).

-Ppoll_interval
When output is pending in a window, wait poll_interval micro-seconds
on every polling loop to give more process time to the processes running
in the windows. The default is zero.

Startup File Format
Upon invocation MGR reads commands from the "startup file",$HOME-

/.mgrc (see -s flag above) to initialize the display. Commands are placed
one per line with the command arguments separated by spaces or tabs.
The following commands are supported:

initcmd command [args...]
This command line is handed to the shell and executed at the time the
startup file is read.

suspendcmd command [args...]
This command line is handed to the shell and executed each time MGR
suspends it self, either due to a main menu selection or the Left-z key.

resumecmd command [args...]
This command line is handed to the shell and executed each time MGR
resumes after a suspension.

quitcmd command [args...]
This command line is handed to the shell and executed just before MGR
quits, either due to a main menu selection or the Left-Q key.

5-2 mgr windows mgr - manage windows on a SUN Workstation

map n0 n1 n2 n3 n4 n5 n6 n7
This changes the meaning of the mouse buttons. Each n[0-7] represents
one of the 8 states of the three mouse buttons. The default mapping is:
0 1 2 3 4 5 6 7. Tochange the meaning of the left and right buttons, 0 2
4 6 1 3 5 7would be used. It is possible to map a button out of existence,
which may have grave consequences.

font font_number font_name
The default font may be overridden by specifying the font name which
is to be substituted for the font at position font_number. Font numbers
are small integers, in the range of 0-99. The font_names are found in the
font directory, by default/usr/mgr/font . See the -f flag above.

window x y wide high [font_number]
A window is created whose corner is at the coordinates (x, y) and whose
size is (wide, high). Units are in pixels, with x and y increasing to the
right and down respectively. Wide and high can be set in terms of
characters in the current font by appending the letter "c" to the value. If
x and y are -1, then they are replaced by values that causes new windows
to "tile" across the screen. Setting wide and high to -1 is identical to
setting them to "80c" and "24c" respectively. The scope of the window
command continues until either another window command or done is
reached. The rest of the options, shell, start, init, flags, and newwindow
apply only to the current window command.

shell command [args...]
Commandis thenameof thecommandorshell tobestarted in thewindow.
If command is not specified, then the environment variable $SHELL, or
/bin/csh is used (this option applies under Sun version, not Applix).

start command
The command is sent to the shell upon startup, as if it had been typed at
the keyboard.

init initial_string
The initial string is sent to the window upon startup. The string is ter-
minated by white space, the remainder of the line may be used as a
comment. The codes: \\, \b, \f \e, \n, \r, or \s may be used to represent \,
backspace formfeed, escape, newline, return, or space respectively.

flags flag...
Normally a window self destructs when the original process running in
it dies. if nokill, currently the only flag, is specified, the window hangs
around until specifically snuffed by the user.

newwindow
The currentwindow specification is not to beused to initialize thedisplay,
but instead will be used when Left n or Right n to create a new window.

done done must be the last line in the startup file if any window commands are
specified, or the last window command will not take affect.

 mgr - manage windows on a SUN Workstation mgr windows 5-3

Using The Mouse
User interaction with MGR is with the mouse. Moving the mouse causes a
corresponding movement of the mouse cursor, usually an arrow pointing to the
upper left. The left or command button of mouse activates a menu whose options
depend upon the current mouse position. An option is chosenby moving the mouse
vertically while the command button is depressed, releasing the button when the
appropriate selection is highlighted.

When the mouse is over the background pattern, or at the extreme left edge of the
screen, the command menu is activated by the mouse. The command menu options
are:

new window
A new window is created by moving the the mouse cursor (now a box)
to the upper left corner of the window, depressing the command button,
sweeping out the window, then releasing the command button. The new
window, if it is big enough, is started with a shell running in it.

redraw
The background and windows are redrawn. This is useful if a process
unknown to MGR scribbles on the display. It is left to the processing
running in a window to fix the contents of its window.

quit
MGR is terminated, after the quit is confirmed. Alternately, MGR may
be suspended (ala ^Z in csh).

When the mouse is over the active window, the fat bordered window the keyboard
is connected to, the window menu is activated by depressing the command button.
The window menu options are:

reshape
Reshape reshapes the active window, using a procedure similar to new
window above.

move
An outline of the current window is moved along with the mouse until
the command button is depressed and released. The current window is
then moved to the new location.

bury
The current window is made inactive. Another window (if any) becomes
the active window.

cut
The mouse may be used to sweep out and save text from the current
windowinto aglobal buffer. Asmall scissorsappearsas themousecursor.
Position the upper left corner of the scissors with the upper left corner of
the first character to besaved, then push one of the mousebuttons, moving
the mouse to sweep out the desired text. Releasing the button causes the
outlined text to be saved. Using the command button with cut causes the

5-4 mgr windows mgr - manage windows on a SUN Workstation

currentcontents of theglobal buffer (if any) tobe replacedby the indicated
text. Either of the other two buttons causes the indicated text to be
appended to the global buffer.

The cut facility currently works only for windows containing a single
font, aligned on the default character boundaries. Applications which
use only the terminal emulator sub-set of MGR capabilities, such as the
shell, mail, and editors automatically meet this restriction. Cuttability
may be restored by issuing a clear (i.e. form feed) to the window. The
window flashes and beeps if the cut operation could not be completed,
usually the result of corrupted data in the window. In such cases, no text
is saved. See MGR - C Language Application Interface for a detailed
description of the various cut option settings.

paste
The contents of the global buffer (if any) are inserted into the input stream
of the current window. The global buffer is filled using cut above, or
under program control.

destroy
Allprocessesassociated with the currentwindowaresenta hangup signal,
and the window is destroyed.

When the mouse is clicked on any window except the active window, that window
moves to the front and becomes the active window.

Using The Left and Right Keys
When MGR is invoked from the console keyboard, many of the system menu
functions have keyboard equivalents. Some of the more interesting ones are
activated by holding down the Left or Right keys, and then pressing:

space bar
to activate the previous window

Back Space
to activate the bottom window

c to initiate a cut-text operation

p to initiate a paste operation

h hide the top window on the bottom

l to clear the active window

m initiate a cut-text operation which will automatically cause a paste
operation when completed

n to start a new window, 80 x 24 characters (if it will fit), placed in the
"tile" position of its window-set ID

N start a new window by sweeping with the mouse

 mgr - manage windows on a SUN Workstation mgr windows 5-5

Q to exit MGR quickly

1-9 to activate the window with window-set ID 1 through 9

0 activates the window with window-set ID 10, a synonym for w10<Re-
turn>

wnumber<Return>
activate the window with window-set ID number

r to redraw the windows

R to redraw the windows

The environment variable DEFAULT_FONT may be assigned the full path name
of a MGR font, which will then replace MGR’s built in default font.

Files

/dev/mouse place to obtain mouse coordinates.

/dev/bwtwo0 name of the display.

/usr/mgr/icon place to find MGR icons.

/usr/mgr/font place to find MGR fonts.

/usr/mgr/font/.mgrc the global default startup file; delivered with 15 fonts
specified.

$HOME/.mgrc place to find startup commands.

/dev/bell For ringing the bell.

/dev/[pt]ty[pq]? Name of the pseudo-tty’s.

See also
MGR - C Language Application Interface
bounce(1L) browse(1L) bury(1L) clock(1L) clock2(1L) close(1L) dmgr(1L)
ether(1L) font(1L) iconmail(1L) iconmsgs(1L) loadfont(1L) maze(1L) menu(1L)
mgr(1L) mgrmail(1L) mgrmsgs(1L) oclose(1L) omgrmail(1L) rotate(1L)
set_console(1L) set_termcap(1L) shape(1L) show(1L) showfont(1L) snap(1L)
startup(1L) stat(1L) stringart(1L) tjfilter(1L) window_print(1L) zoom(1L) bit-
map(5L) font(5L)

Diagnostics
Can’t find a frame buffer
No display device available. Make sure /dev/bwtwo0 exists in /dev.

Can’t find a mouse, or it is already in use MGR must have exclusive control of
the mouse.

5-6 mgr windows mgr - manage windows on a SUN Workstation

Internal MGR error
everything else.

Bugs
* A separate application program, set_console(1L) is required to prevent others
from scribbling on /dev/console and messing up the display.

* As MGR requires exclusive control of the mouse, it may not be invoked from
within itself.

* Only fixed-width fonts are supported.

Author
Stephen A. Uhler

 mgr - manage windows on a SUN Workstation mgr windows 5-7

5-8 mgr windows mgr - manage windows on a SUN Workstation

6
Programs Available

A considerable number of additional programs are available for use in conjunction
withmgr. Some are forprogrammersonly,while others aresimpledemonstrations,
for impressing viewers. Details of these programs are listed hereunder, in
alphabetical order. Have fun!

Bitmap - Bitmap header format for mgr bitmaps.
Synopsis

#include "dump.h"

Description

There are two styles of bitmaps recognized by MGR , The old machine dependent
format, and the new portable format.

Old bitmap files are prepended with a 6 byte ascii header which contains:

1) a two byte magic number,

2) a 2 byte bitmap width, and

3) a two byte bitmap height.

The bitmap data follows the header in raster scan order, with each row padded out
to a 16 bit boundary.

The new, portable bitmap format consists of an 8 byte ascii header containing:

1) a two byte magic number,

2) a 2 byte bitmap width,

3) a two byte bitmap height, a single byte bitmap depth, and 1 reserved byte.

The bitmap data follows the header in raster scan order, with each row padded to
a byte boundary.

The following macros, defined in dump.h may be useful for dealing with bitmap
headers:

B_HSIZE
The bitmap header size in bytes.

B_GETHDR(header,width,height)
extracts the width and height from the B_HSIZE buffer header

B_PUTHDR(header,width,height)
produces a bitmap header for a bitmap width bits wide and height
bits high.

 Programs Available mgr windows 6-1

B_ISHDR(header)
returns true if header is a valid bitmap header

B_SIZE(width,height)
returns the size in bytes (not including the header) of a bitmap width
bits wide and height bits high.

B_MAGIC
is a pointer to a character string whose first 2 bytes are the bitmap
header magic number.

Bugs

The existence of two different bitmap formats is unfortunate. The old format
should go away when the programs that use it are rewritten.

See also

mgr(1L)

6-2 mgr windows Programs Available

bounce - A standard graphics demo
Synopsis

bounce [-s]

Description

Bounce bounces 10 lines around the window forever. The -s flag bounces the lines
slower. Bounce stops if its window is obscured.

See also

mgr(1L)

Author

D. Nachbar

browse - An icon browser for MGR
Synopsis

browse filename...

Description

Browsedisplays the icon filesspecifiedon thecommandline in thecurrentwindow.
If all of the icons specified won’t fit in the window, the pop-up menu accessed
from the middle mouse button permits paging back and forth among the icons.

The Right or pointing button of the mouse, when clicked over an icon, highlights
the icon and prints its filename.

Bugs

* The icon files are read from the same host MGR is executing on, not the host
browse is running on.

See also

mgr(1L) bitmap(5L) zoom(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-3

bury - Bury a mgr window.
Synopsis

bury

Description

Bury pushes the window to the bottom of the screen.

See also

mgr(1L)

Author

S. A. Uhler

c_menu - Turn C error messages into vi menus.
Synopsis

make -k | c_menu; vi

Description

C_menu reads its standard input and looks for lines of the form:
"foo.c", line 19: word undefined.

All such lines are gathered into a set of menus, one for each C file, that are useful
for locating the errors in the source files using the vi edittor.

The main menu contains the names of the C files with errors, selecting a file causes
that file to be editted. Sliding off to the right of the file name menu pops up a list
of error messages. Selecting an error message while in vi causes vi to move its
cursor to the line containing the error.

The most common way to use c_menu is with the MGR cut and paste facility.
After running a make or cc that produces C error messages, simply cut the error
messages, type c_menu;vi , paste the errors into c_menu , then key CNTL d.

See also

mgr(1L) menu(1L)

Bugs

After adding or deleting lines from the file, c_menu’s
notion of which line contains the error is incorrect.

Author

S. A. Uhler

6-4 mgr windows Programs Available

clock - Digital display of time of day on a mgr terminal.
Synopsis

clock [- b] [-f] [-s]

Description

Clock displays a time of day clock on a mgr window. The window shrinks to just
enclose the display. The -f flag is used to specify the font to use for the display.
clock -f5 is typical. -b pushes the clock to the bottom of the display, and -s doesn’t
reshape the window.

See also

clock2(1L) mgr(1L)

Author

S. A. Uhler

clock2 - Analog display of time of day on a mgr terminal.
Synopsis

clock2

Description

Clock2 draws an analog clock face that fills the current window, on which it shows
the current time of day. Square-ish windows produce the best results.

See also

clock(1L) mgr(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-5

close - Close a mgr window.
Synopsis

close [message [font-number]]

Description

Close Makes the current window very small, displays message in it, and moves it
to an unoccupied spot on the screen. If the message includes "%d then the window
set ID will replace itwhen the message is displayed. Uponreactivation, the window
returns to its former size and position. If the closed window is ever covered, it
attempts to find and move itself to some other unoccupied spot.

If no message is given or the message is of zero length, the current hostname along
with the parenthesized window ID is displayed. The window ID can be used to
activate the window from the keyboard. Left-windowID or Right-windowID will
activate the window if the window ID is a single digit. Left-w-windowID or
Right-w-windowID will activate the window for any window ID. Window ID 0
is an alias for window ID 10.

An optional second argument, fontnumber, may be specified to indicate the font
in which message is displayed.

Examples

close
close ’source directory’
close ’’ 0
close ’source directory’ 7

Bugs

* Not all windows on the screen may be closed at once.

See also

mgr(1L)

Authors

S. A. Uhler
M. H. Bianchi

6-6 mgr windows Programs Available

color - set the forground and background color for text in
an Mgr window.
Synopsis

color [dark|light] color on [dark|light] color

Description

color sets the current foreground and background text color for an Mgr window.
Color is oneof black,white, red, green,blue, yellow, cyan or magenta. Alternately,
color may be specified as an index in the color lookup table. Color calls set_co-
lormap(1L) to initialize the color map.

See also

mgr(1L) set_colormap(1L)

Bugs

Color only works with color Mgr .

Author

S. A. Uhler

cut - cut text from a MGR window and send it to a program.
Synopsis

cut [-s] [command]

Description

Cut watches the global MGR cut buffer and when activated, reads the buffer and
starts <command> with the contents of the buffer as <command>’s standard input.

Initially, cut prompts the user for a spot on the display, moves there and becomes
a closed file cabinet icon. Any time text is cut to to MGR’s global buffer, cut
highlights the file cabinet to indicate it has seen the cut text. Cut prepends the
current date, time and message size to the text sent to <command>.

If -s is specified, cut does not prompt the user for a spot, but uses the window as
is. This is useful for starting cut from the MGR startup file. If no command is
given, cut looks for the command in the environment variable CUT .

See also

mgr(1L) snap(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-7

cycle - Display a sequence of icons on an mgr terminal.
Synopsis

cycle [-sspee d] [-r] icon1 icon2 [... <iconn>]

Description

cycle will display the list of specified icons in sequence in an mgr window.

The flag -s speed sets the delay between frames in micro-seconds

The flag -r causes the frames to be run forward and then in reverse and then repeat,
rather than just running them forward repeatedly.

See also

mgr(1L)

Author

S. D. Hawley

dmgr - A rudimentary troff previewer for mgr
Synopsis

ditroff [<ditroff args>] ... | Dmgr

Description

Dmgr is a simple troff previewer for MGR . It reads ditroff output and places
characters on an MGR window in their proper relative location on the page, using
whatever MGR character font happens to be current. Bold face is indicated by
overstiking, italics by underlining. Dmgr pauses at the end of every page and rings
the bell. A RETURN causes dmgr to continue with the next page.

Bugs

* Dmgr uses the current Mgr font for output, which is probably never the appro-
priate font to use. As such Dmgr is useful for previewing the page layout; not for
actually reading the document.

* Dmgr doesn’t know about special characters or ligatures, which are printed as
dashes "-".

* Dmgr invents a page size, suitable for 8-1/2 by 11 inch printers instead of
extracting it from ditroff output.

See also

mgr(1L) ditroff(1)

Author

S. A. Uhler

6-8 mgr windows Programs Available

ether - Display a strip chart of network traffic.
Synopsis

ether [-f<freq >] [-m<max>]

Description

Ether is a graphical version of netstat that runs on mgr terminals. Ether, displays
the number of input packet, output packets, and collisions on the first network
interface reported by netstat.

The following options are recognized on the command line:

-f<freq>
The display is updated every freq seconds, instead of the default 3 seconds.

-m<max>
specifies the maximum number of packets counted per update. The default is 15.

See also

mgr(1L) netstat(1)

Diagnostics

Window is not wide enough Make the window wider and the graph will continue.

Window is not high enough Make the window taller and the graph will continue.

Bugs

If the window is reshaped, ether requires up to freq (usually 3) seconds to learn
about the new window size.

Ether calls netstat(1) and assumes a particular output (i.e. 4.2 BSD).

Author

S. A. Uhler

 Programs Available mgr windows 6-9

font - font file format for mgr bitmaps.
Synopsis

#include "font.h"

Description

MGR font files consist of a font header followed by the bitmap data for each
character. The header format is:

struct font_header {
unsigned char type; /* font type (magic number) ‘^v’ */
unsigned char wide; /* character width (pixels) */
unsigned char high; /* char height (pixels) */
unsigned char baseline; /* pixels from bottom of glyph */
unsigned char count; /* number of chars in font */
char start; /* starting char in font */
};

All of the characters in the font are are stored in a single bitmap, wide x count
pixels wide, and high pixels high.

Bugs

Only fixes width fonts are currently supported.

See also

mgr(1L) bitmap(5L)

6-10 mgr win- Programs Available
dows

iconmail - Notification of mail arrival
Synopsis

iconmail [- s] [-x<pos >] [-y<pos>] [-f] [-p<poll>] [-M<mailer>

]

Description

Iconmail looks for, and announces the arrival of new mail. When initially invoked,
iconmail shrinks its window into a mailbox icon. When new mail arrives, iconmail
rings the bell, displays a mailbox with mail in it. If the iconmail window is acti-
vated, usually by clicking on it with the
mouse, It either creates a larger window with readmail running in it - if you have
mail, or indicates you have no mail.

While in the readmail window, the middle mouse button activates a menu of
commonly used mail commands.

iconmail recognizes the following command line flags:

-s Don’t reshape the window upon iconmail invocation.

-x<pos>
Starting x-coordinate of readmail window.

-y<pos>
Starting y-coordinate of readmail window.

-f<font_number>
Font to use for readmail window.

-p<poll interval>
Look for new mail every poll interval seconds (defaults to 60).

-M<mailer>
Use mailer to read mail, instead of mail.

Bugs

The readmail window sleeps for a second at its termination to permit mail to
indicate new mail arrival while reading mail.

Destroying the mail subwindow is a bad thing to do.

Files

/usr/spool/mail/$USER

See also

mail(1) mgr(1L) mgrmail(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-11

iconmsgs - message arrival notification
Synopsis

iconmsgs [- s] [-x<pos >] [-y<pos >] [-f] [-p<poll>]

Description

iconmsgs looks for, and announces the arrival of new msgs. When initially
invoked, iconmsgs shrinks its window to a bulletin board icon, displaying the
number of pending messages as notes tacked to the board. When new messages
arrive, iconmsgs rings the bell, and tacks a new message to the bulletin board. If
the iconmsgs window is activated when messages are pending, usually by clicking
on it with the mouse, iconmsgs creates a larger window with msgs
running in it.

While in themsgswindow, themiddlemouse buttonactivatesa menu of commonly
used msgs commands.

iconmsgs recognizes the following command line flags:

-s Don’t reshape the window upon iconmsgs invocation.

-x<pos>
Starting x-coordinate of msgs window.

-y<pos>
Starting y-coordinate of msgs window.

-f<font_number>
Font to use for msgs window.

-p<poll interval>
Look for new messages every poll interval seconds (defaults to 60).

Bugs

Destroying the msgs window while msgs is running is a bad thing to do.

Files

/usr/spool/msgs/bounds

$HOME/.msgsrc

See also

msgs(1) mgr(1L) mgrmsgs(1L)

Author

S. A. Uhler

6-12 mgr win- Programs Available
dows

invert_colormap - inverts the colormap on a SUN color display
MGR .
Synopsis

invert_colormap

Description

Set_colormap inverts the current color map in thesense of a photographic negative.

See also

set_colormap(1L) overlay(1L)

Author

S. A. Uhler

lock - lock the sun console
Synopsis

lock

Description

lock displays a screen-phosphor saving pattern on the sun console. When you
login password is typed on standard input, the screen is restored. If you mistype
your password, the pattern direction reverses, and you may try again.

Files

/dev/bwtwo0 to find the screen

/etc/passwd to check the login password

See also

lockscreen(1)

Bugs

Error checking is poor

Author

S. A. Uhler

 Programs Available mgr windows 6-13

maze - A graphical game of solitare
Synopsis

maze

Description

Maze draws a maze and permits you to navigate around it while displaying both
a top and perspective view. The f (or space), r, l, and b keys move you forward,
right, left, and backwards respectively. You can sometimes see others in the maze
if they are playing maze somewhere else on the network.

Bugs

* This is truly a mindless endeavor.

* When other maze players die, they leave ghosts in the maze.

See also

mgr(1L)

Acknowledgments

This program was written by J. Gosling for Andrew and ported to mgr.

6-14 mgr win- Programs Available
dows

menu - create or select an mgr pop-up menu
Synopsis

menu [-option s] [menufile(s)]

Description

Menu downloads or selects a pop-up menu for the mgr window manager for a Sun
workstations.

Options

-sn selects the menu previously loaded into position n; that is, it binds the menu
in position n to the middle mouse button. No downloading takes place.

-s by itself allows downloading of a new menu, without it being selected.

-ln causes loading of a new menu into position n. By default, n is 1. The loaded
menu is also selected (unless -s was specified).

-n "Name of Menu" specifies a name for the menu. Alternatively, a name may
be specified by one or more lines of the form name=anything in the menu
file. By default, the name of the menu is taken to be the name of the input
file converted to upper-case. The menu’s name is displayed at the top of the
menu.

-n by itself suppresses the name altogether.

-fn specifies that the font loaded into font postion n will used for the menu.
Default is 6.

-d<char> indicates that <char> will be used instead of the default, TAB, to delimit
items from actions in the menu file.

The named input files (or standard input by default) should contain one item-action
pair per line, delimited by by one or more delimiter characters (TABs by default).
Items and actions are arbitrary character strings not containing the delimiter
character. The items are displayed in the pop-up menu, and the user is allowed to
select an item using the mouse and middle button. The corresponding action string
is then written to the standard input of the process running in the window. If an
action ends with \c, the newline character following the action is suppressed.

Optionally, the menu file may begin with a delim=<char> line to specify an
alternate delimiter, followed by any number of name=anything lines to specify
one or more lines of menu name, and a font=n line to select a font. The total
number of characters in all actions and items may not exceed approximately 1000.

Examples

menu <<!
delim=:
name= FRUITS
name=--------------
apples:echo apples

 Programs Available mgr windows 6-15

oranges:echo oranges
pears:echo pears
passion fruit:echo passion fruit
three cherries:echo Jackpot!
!

Author

Paul A. Tukey (bellcore!paul)

6-16 mgr win- Programs Available
dows

mgrmail - Notification of mail arrival
Synopsis

mgrmail [-s] [-x<pos>] [-y<pos>] [-f] [-p<poll>] [-M<mailer>

]

Description

Mgrmail looks for, and announces the arrival of new mail. When initially invoked,
mgrmail shrinks its window to the single line Looking for new mail. When new
mail arrives, mgrmail rings the bell, and states You have new mail. If the mgrmail
window is activated, usually by clicking on it with the mouse, It creates a larger
window with readmail running in it.

While in the readmail window, the middle mouse button activates a menu of
commonly used mail commands.

Mgrmail recognizes the following command line flags:

-s Don’t reshape the window upon mgrmail invocation.

-x<pos>
Starting x-coordinate of readmail window.

-y<pos>
Starting y-coordinate of readmail window.

-f<font_number>
Font to use for readmail window.

-p<poll interval> Look for new mail every poll interval seconds (defaults
to 60).

-M<mailer>
Use mailer to read mail, instead of mail.

Bugs

The readmail window sleeps for a second at its termination to permit mail to
indicate new mail arrival while reading mail.

Destroying the mail subwindow is a bad thing to do.

Files

/usr/spool/mail/$USER

See also

mail(1) mgr(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-17

mgrmsgs - message arrival notification
Synopsis

mgrmsgs [- s] [-x<pos >] [-y<pos >] [-f] [-p<poll>]

Description

Mgrmsgs looks for, and announces the arrival of new msgs. When initially
invoked, mgrmsgs shrinks its window to the single line displaying the number of
pending messages. When new messages arrive, mgrmsgs rings the bell, and
updates the current message count. If the mgrmsgs window is activated when
messages are pending, usually by clicking on it with the mouse, It changes to a
larger window with msgs running in it.

While in themsgswindow, themiddlemouse buttonactivatesa menu of commonly
used msgs commands.

Mgrmsgs recognizes the following command line flags:

-s Don’t reshape the window upon mgrmsgs invocation.

-x<pos>
Starting x-coordinate of msgs window.

-y<pos>
Starting y-coordinate of msgs window.

-f<font_number>
Font to use for msgs window.

p<poll interval>
Look for new messages every poll interval seconds (defaults to 60).

Files

/usr/spool/msgs/bounds

$HOME/.msgsrc

See also

msgs(1) mgr(1L)

Author

S. A. Uhler

6-18 mgr win- Programs Available
dows

oclose - Close a mgr window.
Synopsis

oclose [<message >] [-Fn]

Description

Oclose makes the current window very small, displays message in it, and moves
it to the bottom of the screen. Upon reactivating the window, it returns to its former
size and position. If no message is given, the current hostname is displayed instead.
An optional font number may be specified to indicate the font in which message
is displayed.

Bugs

* oclose does a poor job of placing the icon.

* Not all windows on the screen may be closed at once.

See also

mgr(1L)

Author

S. A. Uhler

 Programs Available mgr windows 6-19

omgrmail - Notification of mail arrival
Synopsis

omgrmail [- s] [-x<pos >] [-y<pos>] [-f] [-p<poll>] [-M<mailer>

]

Description

Omgrmail looks for, and announces the arrival of new mail. When initially
invoked, omgrmail shrinks its window to the single line Looking for new mail.
When new mail arrives, omgrmail rings the bell, and states You have new mail.
If the omgrmail window is activated, usually by clicking on it with the mouse, It
changes to a larger window with readmail running in it.

While in the readmail window, the middle mouse button activates a menu of
commonly used mail commands. The omgrmail window may be relocated on the
screen by activating the readmail subwindow, and moving its upper left corner to
the desired omgrmail window location.

Omgrmail recognizes the following command line flags:

-s Don’t reshape the window upon omgrmail invocation.

-x<pos>
Starting x-coordinate of readmail window.

-y<pos>
Starting y-coordinate of readmail window.

-f<font_number>
Font to use for readmail window.

-p<poll interval>
Look for new mail every poll interval seconds (defaults to 60).

-M<mailer>
Use mailer to read mail, instead of mail.

Bugs

The readmail window sleeps for 2 seconds at its termination to permit mail to
indicate new mail arrival while reading mail.

Files

/usr/spool/mail/$USER

See also

mail(1) mgr(1L)

Author

S. A. Uhler

6-20 mgr win- Programs Available
dows

overlay - Enable or disable the overlay plane on a Sun 110. MGR
.
Synopsis

overlay on|off

Description

Overlay enables or disables the overlay plane on Sun’s that have them. Setting
the overlay plane on causes the monochrome plane to obscure the color planes.
Setting the overlay plane off turns off the monochrome frame buffer, permitting
the color frame buffer to be visible.

See also

mgr(1L)

Author

S. A. Uhler

rotate - Rotate a bitmap 90 degrees.
Synopsis

Rotate [-w wide -h hig h] [-x] [-v]

Description

Rotate is a filter that rotates a 1 bit deep bitmap clockwise by 90 degrees. Normally
rotate expects a bitmap in mgr format which uses a bitmap header to specify the
width and height. Alternately, the -w and -h flags may be used to indicate the
bitmap width and height if no bitmap header is present. If -x is specified, no bitmap
header will be produced for the resultant bitmap. The -v flags prints <’s and >’s
to help stave off boredom while rotate is running.

Bugs

Rotate can’t currently rotate bitmaps with more than 1200 rows.

See also

bitmap(5L)

Author

S. A. Uhler

 Programs Available mgr windows 6-21

set_colormap - initialize colormap entries suitable for MGR.
Synopsis

set_colormap

Description

Set_colormap initializes the first and last 24 colormap entries suitably for color
MGR . The first 8 colors are set to white, black, red, green, blue, yellow, cyan,
and magenta. The second 8 colors are dark versions of the first 8 colors, whereas
the third 8 colors are bright versions of the first 8 colors. The last 24 colors are
set to the inverse of the first 24 colors.

See also

mgr(1L) overlay(1L)

Bugs

Set_colormap is Sun specific, and no provision is made to set the remainder of the
colormap.

Author

S. A. Uhler

6-22 mgr win- Programs Available
dows

set_console - redirect console messages to a MGR window.
Synopsis

set_console

Description

Set_console , when run in a MGR window, redirects console messages to that
window.

See also

mgr(1L)

Bugs

* Redirecting console messages raises havoc if the keyboard is not in direct mode.
Set_console prints a warning message and fails if the keyboard is not in direct
mode.

*Consolemessagesautomaticallyget reset to theconsolewhenMGR issuspended.
Set_console should be reissued after resuming a suspended MGR .

Author

S. A. Uhler

 Programs Available mgr windows 6-23

set_termcap, set_emacs - set an appropriate TERMCAP entry for
MGR.
Synopsis

eval ‘set_termcap [-b]‘

Description

Set_termcap Prints on stdout the shell commands required to set the TERMCAP
environment variable appropriately for the current window size on a mgr terminal.
Set_termcap looks at the SHELL environment variable to decide what shell
commands are appropriate. the command eval ‘set_termcap‘ sets the TERM and
TERMCAP environment variables appropriately.

Set_emacs optimizes the termcap entry for GNU-emacs, which knows how to deal
with scrolling regions and multiple line inserts and deletes, whereas set_termcap
keeps vi happy.

Bugs

csh usrs need to use: set noglob; eval ‘set_termcap‘ to keep the shell from getting
confused.

See also

csh(1) mgr(1L) sh(1)

Author

S. A. Uhler

shape - Reshape mgr window.
Synopsis

shape [<columns >] [<rows>]

Description

Shape Reshapes the window to the specified number of columns and rows. With
no arguments shape makes an 80 column by 24 row window. With one argument,
shape changes the number of lines to the number given, leaving the number of
columns unchanged.

Bugs

Given unreasonable arguments, shape doesn’t guarantee reasonable results

See also

mgr(1L)

Author

S. A. Uhler

6-24 mgr win- Programs Available
dows

show - displays a bit-mapped image on a mgr window.
Synopsis

show [-r] [<x coord >] [<y coord>] [<bits wide>]

Description

Show copies its standard input, which is assumed to be in MGR bitmap format to
the window as a bit mapped image. The starting position of the bit map relative
to the top left corner of the window may be given as x coord and y coord
respectively. If bits wide is specified on the command line, show assumes no
bitmap header is present. Specifying -r changes the sense of black and white.

Bit maps too big to fit on the window are clipped. The incoming data for each
row should be rounded up to an even number of bytes. The bits are displayed left
to right, then top to bottom.

Bugs

Large bit maps take too long to display.

See also

mgr(1L) bitmap(5L)

 Programs Available mgr windows 6-25

snap - capture a portion of the display as a bitmap image
Synopsis

snap [-n] <file>

Description

Snap letsa usercapture abit imageof anarbitrary rectangularportion of thedisplay.
This image may be saved in a file, send to a printer, or copied back to the display.

When snap is active, the user may sweep out an image with the 3rd mouse button.
Upon releasing the button, this image is captured and remembered by Snap. The
middle button pops-up a menu with the following options:

Print
The image snapped is sent to the printer (via lpr) in MGR bitmap format with the
-v flag set. If the PRINTER environment variable is set, it is used to specify the
printer name, otherwise the image is sent to lp .

File
The last image snapped is saved in the file specified on the command line when
snapwas invoked, in MGRbitmap format. Successive invocationsof file overwrite
any previously stored images.

Review
Once Review is selected, The user may sweep out (using the 3rd mouse button,
as before) an area on which to display the snapped image. If nothing is swept
within 10 seconds, snap flashes, rings the bell, and reverts to capture mode. While
reviewing in enabled, the snap icon remains inverse video. The displayed image
is clipped to fit within the region swept out by the user. If the user simply clicks
the 3rd mouse button twice without sweeping, snap copies the entire saved image
to the display, starting at the mouse location.

Quit
Snap de-iconifies itself and quits.

When -n is specified on the command line, the new (8 byte header) style bitmap
format is produced, instead of the old (6 byte header) format.

Files

/dev/bwtwo0 to find the display image.

See also

lpr(1) window_print(1L)

Diagnostics

* Can’t find screen The frame buffer won’t open.

* Can’t open file The file can’t be opened for writing.

6-26 mgr win- Programs Available
dows

Bugs

* The user interface is overly simplistic.

* snap only works on the mgr host.

* The review function can write on the display arbitrarily, destroying its integrity.

Author

S. A. Uhler

 Programs Available mgr windows 6-27

startup - produce a startup file reflecting the current mgr screen
layout.
Synopsis

startup

Description

Startup produces the current mgr window layout on its standard output, in a form
suitable for the mgr startup file, $HOME/.mgrc.

Bugs

startup produces only the windows positions, neglecting the fonts and commands
currently running in the windows.

See also

mgr(1L)

stat - Display a strip chart of one or more current machine statis-
tics.
Synopsis

stat [-bsf<freq> [[-<max>] <parameter>]] ...

Description

Stat is a graphical version of vmstat that runs on mgr terminals. Stat, with no
options, displays the list of parameters it will chart.

The following options are recognized on the command line:

-b Do not update the display if the window is obscured. When the window is
uncovered, the display rushes to catch up, instead of reflecting reality immediately.

-s Traces are drawn as thin lines, instead of solid filled.

-f<freq>
Thetime interval betweendisplay updates is freq seconds. The default is 5seconds.

-<max>
specifies the maximum value of the following parameter, in units appropriate for
that parameter.

<parameter>
is a code that represents a particular statistic to plot. The available parameters are:
r jobs in run q
b jobs blocked
w jobs waiting
fre free memory
fr freed pages

6-28 mgr win- Programs Available
dows

d1 disk 1 accesses
d2 disk 2 accesses
d3 disk 3 accesses
d4 disk 4 accesses
in interrupts
sy system calls
cs context switches
us % user time
kn % system time
id % idle time

See also

mgr(1L) vmstat(1)

Diagnostics

Window is not wide enough
Make the window wider and the graph will continue.

Window is not high enough
Make the window taller and the graph will continue.

Bugs

If the window is reshaped, stat requires up to freq (usually 3) seconds to learn
about the new window size.

Stat calls vmstat(1), and assumes a particular (i.e. BSD 4.2) output format from
vmstat(1).

 Programs Available mgr windows 6-29

stringart - A standard graphics demo
Synopsis

stringart

Description

Stringart draws bunches of lines in a geometric patterns, erases them, and starts
again with a different pattern.

See also

mgr(1L)

tjfilter - Bitmap lpr filter for the HP ThinkJet printer.
Synopsis

tjfilter [-r]

Description

Tjfilter reads its standard input which is expected to be a one bit deep bitmap image
in mgr format and transforms it for printing on an HP ThinkJet printer. If -r is
specified, the bitmap is reversed (ala a photographic negative). For
bitmaps which are wider than 640 dots, but less than 640 dots high, tjfilter calls
rotate(1L) in order to fit the bitmap on the printer.

Tjfilter is normally used as the vf filter in the HP ThinkJet printcap entry:
...:vf=/usr/local/bin/tjfilter:...

Bugs

The HP Thinkjet printer can print a maximum of 640 dots per
line. Bitmaps that don’t fit get truncated.

See also

bitmap(5L) rotate(1L) lpr(1L)

6-30 mgr win- Programs Available
dows

window_print - print an image of an MGR window on a printer.
Synopsis

window_print [-f filte r] [-j name] [-m message] [-p printe r] [-o

optio n] [-x file]

Description

Window print prints the images of windows on a printer. When first invoked,
Window print iconifies itself with the message Window dump. A hard copy of a
window is made by activating the window print window and clicking the third
mouse button over the desired window. Window_print copies the image of the
window onto a file, then invokes lpr to print it.

command options

-f filter
The name of an (optional) unix filter for converting the mgr bitmap format
file into a form suitable for lpr.

-[jJ] name
The name printed on the burst page of the printer, normally window.

-m message
The string displayed in the iconified window.

-[pP] printer
The name of the printer, as in lpr.

-v option
Normally lpr is invoked with the -v flag. If option is specified, it is used
instead.

-x file
The image files is copied to file instead of being sent to lpr

Files

/tmp/pr* temporary bit image file

See also

lpr(1)

Diagnostics

debugging output may be obtained by setting the environment variable DEBUG.

Bugs

The temporary file is created on the machine which is running mgr, not the machine
running window_print.

 Programs Available mgr windows 6-31

zoom - an icon editor for mgr
Synopsis

zoom <icon file> ...

Description

zoom is a mouse driven icon editter for mgr. Zoom divides the window into three
regions, a banner line at the top containing four status fields, a message line at the
bottom, and the remainder of thewindow for anenlarged,or zoomed representation
of <icon> being editted. If the first file given on the command line is not an icon,
zoom prompts for its width and height.

The current state of zoom is indicated by the four status fields in the banner line.

* The first, or raster function field displays the current raster-op function to be
applied to the next edit operation. This function may be changed with the
pop-up menu, activated by pressing the middle mouse button while the mouse
track is in the raster function field. Normally the choices are set, clear, toggle and
grid. The first three are raster-op functions; the grid option toggles the bitmap
alignment grid. If the put command is pending (see below), the raster-op choices
become copy, paint mask, and exclusive-or.

* The second, or edit field displays one of the six possible edit functions: Yank,
Put, Shrink, Grow, Fix, and Undo. Fix and Undo are performed when selected.
Fix changes the window size to give square pixels. Undo un-does the previous
edit operation. If any of the other functions is selected, it becomes the pending
function, and is highlighted. When a function is pending, the next sweep operation
performs that function on the group of pixels enclosed by the sweeping rectangle
(the selected pixels).

Yank copies the selected pixels into the yank buffer.

Put combines the yank buffer with the selected pixels in a manner determined by
the current raster function field.

Shrink makes the icon smaller by scaling the selected pixels to fill the entire
window.

Grow makes the icon bigger by scaling the entire icon to fit into the selected pixel
region.

* The Third or size field displays the current width and height of the icon, in pixels.
The size of the icon may be changed by selecting the pop-up menu when the mouse
track is in the size field and responding to the prompt. While in the prompt window,
the menu permits the selection of several standard icon sizes.

* The fourth, and final field is the file field. The file field displays the current file
name of the icon. The filing options Save, Get, Yank, and Quit are, as usual,

6-32 mgr win- Programs Available
dows

accessed by a pop-up menu when the mouse track is in the file field. The file
options prompt for a file name. A list of all of the files specified on the command
line is available via the pop-up menu within the prompt window.

Save saves the icon by the specified name.

Get edits a new icon , tossing the current icon into the bit-bucket.

Yank copies the specified icon into the yank buffer for use with the put command.

Quit quits Zoom. Quit does NOT save the icon. A save must be explicitly issued
first. Zoom may also be terminated by typing "Q\r" to the window, or hitting your
favorite interrupt key.

For those who are not particularly font of rodents, all of the zoom commands may
be accessed via 1 or 2 letter keyboard commands (followed by a \r), some of which
are:

R Repaint window
x toggle alignment grid
w FIX window aspect ratio
u UNDO

s1 select SET mode
s2 select CLEAR mode
s3 select TOGGLE mode

f SAVE file
g GET a new file
y YANK a file
Q QUIT

F1 select YANK function
F2 select PUT function
F3 SHRINK icon
F4 GROW icon

P0 set COPY mode
P1 set PAINT mode
P2 set MASK mode
P3 set XOR mode

Okay, now to edit the icon.

* Pressing the middle button and moving it either sets or clears the pixels it passes
over. If the first pixel it touches is clear, the pixels will be set; if it is set, all touched
pixels will be cleared.

* Holding, moving, then releasing the right mouse button sweeps out a rectangular
region of selected pixels. If no function is currently highlighted in the edit field,
the current raster-op function is performed on the selected pixels. Otherwise, the
highlighted function is performed.

 Programs Available mgr windows 6-33

Bugs

* Zoom works best on small icons, running on the local machine.

* You can’t view the actual size of the icon being editted.

* Icon coordinates must be typed in exactly in the form of x , y with no spaces or
tabs.

See also

browse(1L) dump(5L) mgr(1L)

6-34 mgr win- Programs Available
dows

7
MGR - C Language Application Interface

Stephen A. Uhler, Bell Communications Research

Introduction

MGR (manager) is a window system for Unix that currently runs on Sun Work-
stationsand the Applix1616. MGR managesasynchronous updatesof overlapping
windows and provides application support for a heterogeneous network
environment, i.e., many different types of computers connected by various com-
munications media. The application interface enables applications (called client
programs) to bewritten ina varietyof programming languages, and run on different
operating systems. The client program can take full advantage of the windowing
capabilities regardless of the type of connection to the workstation running MGR.

Client programs communicate with MGR via pseudo-terminals over a reliable byte
stream. Each client program can create and manipulate one or more windows on
the display, with commands and data to the various windows multiplexed over the
same connection. MGR provides ASCII terminal emulation and takes responsi-
bility for maintaining the integrity of the window contents when parts of windows
become obscured and subsequently uncovered. This permits naive applications
to work without modification by providing a default environment that appears to
be an ordinary terminal.

In addition to terminal emulation, MGR provides each client window with:
graphics primitives such as line and circle drawing; facilities for manipulating
bitmaps, fonts, icons, and pop-up menus; commands to reshape and position
windows; and a message passing facility enabling client programs to rendezvous
and exchange messages. Client programs may ask to be informed when a change
in the window system occurs, such as a reshaped window, a pushed mouse button,
or a message sent from another client program. These changes are called events.
MGR notifies a client program of an event by sending it an ASCII character string
in a format specified by the client program. Existing applications can be integrated
into the windowing environment without modification by having MGR imitate
keystrokes in response to user defined menus or other events.

Copyright (c) 1988 Bellcore
All Rights Reserved

Permission is granted to copy or use this program, EXCEPT that it may not be
sold forprofit, thecopyright notice must be reproduced oncopies, and credit should
be given to Bellcore where it is due.

Bellcore makes no warranty and accepts no liability for this program.

 MGR - C Language Application Interface mgr windows 7-1

The user interface provides a simple point-and-select model of interaction using
the mouse with pop-up menus and quick access to system functions through
meta-keys on the keyboard. MGR also provides a cut and paste function that
permits a user to sweep out and copy text from any window and paste it into any
other.

Thisdocumentdescribes the low levelC interface library forMGR. The CInterface
libraryprovides a set of macros and functionswhich implement the stream protocol
and provide clients written in C with a function call interface to MGR. This library
provides the lowest level access to MGR functions and represents a direct mapping
to the underlying protocol. It is expected that a higher level interface will evolve
to support application development at a higher level. The library requires only
the UNIX Standard I/O Library for its operation and access to a byte sequential
I/O interface from the underlying operating system.

Model of Interaction

The basic unit within MGR is the window. A window is a rectangular region on
the display, surrounded by a border, with a single connection to other processes.
All interactions among the client program, the user and MGR are defined entirely
in terms of the state of a client’s window or windows. MGR has no concept of
window types; there are no separate graphics windows, text windows, or edit
windows. Every window supports exactly the same set of capabilities as every
other window. In addition, all windows act independently. Client programs need
not know or care about the existence of other clients or windows that happen to
coexist on the same display. The management of overlapping windows is handled
entirely by MGR. For example, when a window is partially or totally obscured
by another window, then subsequently uncovered, MGR restores the integrity of
thewindow’scontents. Therearenosub-windows,windowswhosesizeorposition
are in some way restricted by a parent window. A client may create and manipulate
many windows, each of which may be positioned and sized independently on the
display.

At any given time there is one special window on the display, the active window.
This is the window that receives keystrokes and mouse data. It is distinguishable
to the user from the other windows on the display by its emboldened border. The
active window, in addition to receiving all mouse and keyboard data, is also
logically in front of the other windows on the display. The active window is,
therefore, always completely exposed. Any window can become the active
window, but there can only be one active window at a time.

A client program may change its window at any time, write text into it, draw lines,
anything, so long as the change is local, that is the change affects just its window.
Only the active window may effect global changes to the display, such as changing
its shape or position. The only global action a non-active window may perform
is to become the active window. This window model provides both the user and
application developer with a simple, consistent model of interaction.

7-2 mgr windows MGR - C Language Application Interface

Coordinate Systems

MGRuses fourdifferentcoordinatesystems,displaycoordinates,absolute window
coordinates, relative window coordinates, and character coordinates. The entire
display is represented by display coordinates whereas each window has its own
absolute window, relative window, and character coordinate systems.

Display coordinates are in units of pixels. The coordinate (0,0)is the top left pixel
on the display. The X coordinate increases to the right, the Y coordinate increases
down. The maximum X and Y coordinate depend upon the particular display in
use, for the SUN-3 they are 1152 by 900. Commands that operate on the context
of the entire display, such as reshaping a window are specified in display
coordinates. Windows, when measured in display coordinates include their
borders.

Absolute window coordinates, as with display coordinates, are measured in units
of pixels. The X and Y values increase to the right and down respectively. The
origin, coordinate (0,0)is at the top left corner of the window, just inside the
window border.

Relative window coordinates are measured as a fraction of the window’s size and
shape. As with absolute window coordinates, each window has its origin, (0,0),
at the top left corner of the window just inside the border, however the lower right
corner of the window is always at coordinate (999,999). Graphics commands to
a window in relative window coordinates are automatically scaled to the size of
the window.

Character coordinates are measured in rows and columns in the current font, just
like an ordinary terminal. The coordinate (0,0)is the top left character position
in the window. The maximum row and column in the window depends on both
the window and font size.

Functional Overview

The types of commands a client program may issue MGR are divided into 14
categories: terminal emulation, graphics, bit-blts, window positioning, font
changes, state inquiry, saved contexts, menus, events, sweep functions, multiple
window manipulation, cut and paste, messages, and window modes. What follows
is a brief description of those command categories, and some examples of specific
functions within the category. A detailed description of each command is provided
in the following section.

Terminal Emulation

At its basic level, every MGR window emulates a CRT terminal. It provides
functions for inserting and deleting lines and characters, highlighting text, clearing
areas and windows, and arbitrary cursor motion capabilities. Sample MGR

 MGR - C Language Application Interface mgr windows 7-3

TERMCAP andTERMINFO descriptions aregiven in the tables below. No entries
are provided for keyboard key values, as they depend upon the particular keyboard
in use.

Sample MGR TERMCAP Entry _ Px MGR MGR terminal:\
:am:bs:im=:ta=^I:\
:AL=\E%da:al=\Ea:\
:cd=\EC:ce=\Ec:cl=^L:\
:cm=\E%r%d,%dM:\
:co#80:li#24:\
:cs=\E%d,%dt:\
:DC=\E%dE:dc=\EE:\
:DL=\E%dd:dl=\Ed:\
:do=\Ef:up=\Eu:nd=\Er:\
:IC=\E%dA:ic=\EA:\
:se=\En:so=\Ei:\
:ve=\Ev:vs=\EV:

Sample MGR TERMINFO Entry _ Px | MGR | MGR Terminal,
cols#80, lines#24,
am, msgr, ht=^I,
clear=^L, cr=^M, bel=^G,
cub1=^H, cud1=\Ef, cuf1=\Er,
cuu1=\Eu, ind=^J,
cup=\E%p2%d;%p1%dM,
csr=\E%p1%d;%p2%dt,
wind=\E%p2%d;%p2%p4%+%d;%p1;%p1%p3%+%d;t,
el=\Ec, ed=\EC,
il1=\Ea, dl1=\Ed,
il=\E%p1%da, dl=\E%p1%dd,
smso=\Ei, rmso=\En,
smcup=\E1664P, rmcup=\Et\Ep,

MGR permits the client program to restrict the terminal emulator to an arbitrary
subrectangle within the window, called a text region. For example, a text editor
wishing to provide scroll bars or banner lines can still let MGR do the terminal
emulation by specifyinga text region that excludes the top and sides of the window.
This text region may be redefined or moved around at will, permitting multiple
terminal sub regions in the same window.

Graphics

In addition to terminal emulation, MGR provides a suite of pen plotter style
graphics primitives. A client program may draw lines, circles, ellipses, and
elliptical arcs on a window. The graphics objects may either be completely
positioned, or located relative to an internal graphics point, maintained by MGR.
The objects may also be drawn into undisplayed or scratchpad areas, then copied
to the windowas a singleunit. The graphics pointmay bealigned with the character

7-4 mgr windows MGR - C Language Application Interface

cursor, for locating graphic objects relative to character text. Conversely, the
character cursor may be aligned with the graphics cursor, permitting character text
to be placed at arbitrary positions on the window.

Bit-blts

MGR provides a complete set of functions for dealing with bitmaps, or rectangular
arrays of pixels. Bitmaps may be combined with any of the 16 possible bit-blt
operations. Non-displayed bitmaps of arbitrary size may be created and destroyed,
and bit-blts may be performed on the window, within a scratch-pad bitmap,
between two scratch-pad bitmaps, or between a scratch-pad bitmap and the win-
dow. Bitmap images may be down-loaded from client programs to MGR, or
up-loaded from MGR to the client program. In addition, bitmaps may be saved
in files by MGR, or loaded into MGR from files. These last two capabilities permit
client programs to manipulate large amounts of bitmap data without the need to
send the bits over the communication channel.

Window Positioning

Either the user or client program may move the active window around on the
display. Windows may be moved with their size retained, reshaped but remain at
the same location, or be both moved and shaped anywhere on the display. If the
window is the active window, it may be buried (shoved to the back on the display).
If the window is not the active window, it can become the active window and then
moved about on the display.

Font Changes

Client programs may change character fonts at any time, even on a character by
character basis. MGR comes with scores of different fonts, ranging in size from
microscopic to viewgraph size. Client programs are free to create and down-load
their own fonts. The fonts supplied by MGR are constant width, that is i’s take
up the same amount of room as m’s do. There are commands to aid client programs
that wish to use proportional fonts.

State Inquiry

A client program may ask MGR about the state of its current window, such as its
size and position on the display, the name and size of the current font, the position
and extent of the text region, and the state of various mode settings. The client
may also inquire about the state of the window system as a whole. That includes
the position and state of the mouse, the number and sizes of the available fonts,
and the organization of windows on the display. The display organization may
include the position, size, name, ownership, and spatial ordering for all windows
on the display.

Saved Contexts

Certain parts of the current window environment may be pushed on a stack, then
restored at some later time. Client programs rarely need to know the context in

 MGR - C Language Application Interface mgr windows 7-5

which they are called. They simply push those aspects of the environment they
will change, then restore them before exiting. About a dozen different parts of the
window environment, such as menus, character fonts, window position, etc. may
be stacked independently, or in any combination.

Menus

MGR has built in support for pop-up menus. Clients may arrange for menus to
pop-up in response to mouse button hits. Up to 50 menus may be down-loaded at
once for each window. The client selects which menu will pop-up when a mouse
button is pushed. When an item of a pop-up menu is chosen, MGR returns the
string previously put into the menu by the client program. The client program may
arrange for different menus to pop up depending upon the current mouse position.
Menus may also be linked together as a pop-up menu tree. Sliding off to the right
of a menu (called a parent menu) while an item is selected can cause another menu
(called a child menu) to pop up. Any item of the parent menu may be specified
as the entry item for a child menu. Upon selecting an item of a child menu, the
client program may arrange for MGR to return ether the action string associated
with just the child menu item, or the action strings for the selected items of all the
menus. Similar to sliding menus, MGR supports paging menus as well. Long
menus may be broken into several pages by the client program. MGR manages
the paging automatically, popping up the next page as the user slides off the bottom
of a paged menu.

Events

Client programs may arrange to be informed by MGR when some change, called
an event, happens to the state of the window system. As with menus, the message
informing the client program of a change is formated as specified by the client
program. Examples of events include mouse buttons being depressed or released,
windows changing shape or moving, and the window becoming the active window
or being covered by another window. Window state information, such as the
current cursor position, may be returned as part of an event string.

Sweep Functions

It is often convenient for client programs to sweep, or rubber-band simple objects,
such as lines or boxes, in response to moving the mouse. MGR provides client
programs with a mouse activated sweep function. MGR tracks an edge of the line
or box with the mouse and reports the coordinates to the client at the conclusion
of the sweep operation, when the user releases the mouse. As usual, the client
program specifies the format of the data returned by MGR.

Multiple Window Manipulation

A single client program may create and manipulate additional windows, called
alternate windows. The data destined for, or to be received from, an alternate
window is multiplexed on the same channel as the main window. The client
program selects a window to receive output, and all output goes to the selected

7-6 mgr windows MGR - C Language Application Interface

window until a different window is selected. For input, the client program uses
the event mechanism to determine from which window input arrived. Alternate
windows have the same capabilities as the main window. There is currently no
limit to the number of alternate windows a client program may have. Up to 100
windowsmay existon the displayatone timebeforeperformance begins to degrade
seriously.

Cut and Paste

MGR provides a globally accessible snarf buffer shared among all client programs.
Any client program may put data into or read data from this buffer. MGR provides
a user initiated cut and paste function from the command menu.

MGR extracts character text from the window and places its ASCII representation
into the snarf buffer. Paste copies the contents of the snarf buffer to the input
stream of the active window. Client programs, by manipulating the data in the
snarf buffer, can interact with the system cut and paste functions.

Messages

Although the snarf buffer gives client programs a simple asynchronous interpro-
cess communication mechanism, MGR has a more general synchronous inter-
process message passing scheme. A client program may send a message to another
client program, or broadcast the message to all client programs. As a message
recipient, the client program may elect to receive messages as an event and
encapsulate the message and sender name in the format of its choice. MGR
provides the primitives needed to implement server clients by permitting servers
to register their names, services and protocols with MGR. Client programs may
query MGR for a list of active servers. Server messages may be associated with
windows by the server client programs in such a way that the message is auto-
matically received by a client program as part of a mouse button event whenever
the mouse button is pressed on the server’s window. Using this mechanism, client
programs can interact with server clients without any advance knowledge of which
servers are available or what services they are providing.

Window Modes

Client programs may select various combinations of window modes. These modes
tailor the behavior of the macros described above. Examples of window modes
include auto line wrap and character overstrike that affect the terminal emulation,
different coordinate system settings that affect graphics commands, or flags that
set a window to activate automatically upon receiving input, ignore all keyboard
input, or suspend output while a window is obscured.

Underlying Protocol

The purpose of this library package is both to provide a function call interface to
the stream protocol, and to document each command understood by MGR. There
are two types of MGR commands, as summarized in the table below.

 MGR - C Language Application Interface mgr windows 7-7

MGR command protocol _ T{ ESC X1, X2,...,

Xn command T} T{ ESC X1, X2,..., Xn length command data T}

In both cases, ESC is the ASCII escape character or ‘\033’, whereas the word
command represents a single character command identifier. The X’s are optional
integers, there can be as few as zero, as in the command center box; c. ESCa which
inserts a blank line in the window, or as many as eight, as would be used by the
command

ESC0,0,50,100,10,20,3,2b

which is an example of a command to copy images between bitmaps. No spaces
may be included between the ESC character and the command identifier character,
but the argument separators may be either commas (,) or semicolons (;).

The function of the command is determined both by the command identifier
character and n, the number of numeric arguments preceding the command
identifier character. All of the commands with the same command identifier
character are closely related in function. For example, all the commands in the
following table have the same command character, ‘o’, and all draw ellipses, but
have different effects based upon the number of arguments.

Commands that draw ellipses

1 ESC100,200o

2 ESC100,200,300,400o

3 ESC100,200,300,400,2o

All of the ellipses have major and minor axis lengths of 100 and 200 units
respectively. Command 1 draws the ellipse at the current graphics location.
Command 2 draws the ellipse at the location specified by the third and forth
arguments, at (300,400). Command 3 draws the ellipse into scratchpad bitmap
number 2.

The second form of MGR commands, which is a special case of the first form, is
used for downloading data from the client program to MGR. The integer length
specifies the number of bytes of data to be downloaded, and data are the length
number of data values downloaded. An example of the second type of MGR
command is

ESC11,7bI-moved

which instructs MGR to send the client program the string I-moved any time the
client’s window is moved to a different location on the display. The 11 refers to
the number of the move event and the 7 is the number of characters in the event
string, which in this case is I-moved.

All of the command identifier characters are listed in window.h. The command
actions, determined by the command identifier and number of command argu-
ments, are described by the macros in this document.

7-8 mgr windows MGR - C Language Application Interface

Conventions and Notation

All functions and macros and programming examples are shown in a typewriter
font to distinguish them from ordinary text. Similarly, function and macro argu-
ments are shown in a bold typewriter font.

The names of often used arguments passed to macros indicate their function, and
are defined below.

column,row
The integers column and row refer to a character position in character
coordinates even though characters may be placed at arbitrary pixel
locations within a windowand need not fall on column or row boundaries.

Dwidth,Dheight
The integers Dwidth and Dheight represent a width and height in display
coordinates.

mode
The positive integer mode, represents the bit combination of window
modes. Mode is usually an ored list of constants in term.h. A typical use
of mode is the argument to m_push(mode) as in m_push(P_FLAGS |
P_EVENT | P_MENU).

n
The small non-negative integer n represents a resource descriptor when
describing objects such as windows, fonts, or menus.

name
Name is the file name of a bitmap image on the MGR-host machine. File
names given with no directory prefix are referenced relative to the icon
subdirectory of MGR’s home directory. The home directory is instal-
lation dependent, and may be determined with the command MGR -V.

parent,child
The small positive integers parent and child represent menus. A child
menu is linked to a parent menu forming a tree of menus.

radius
The positive integer radius along with radius1 and radius2 signifies a
radius when referring to circles or major and minor axis when referring
to ellipses. They are only referenced in respect to window coordinates.

string
An array of characters, string is a null terminated ASCII character string.
Except where noted, several ASCII control characters can be included in
strings by escaping them with \X, where X is one of the characters shown
in the following table.

 MGR - C Language Application Interface mgr windows 7-9

Character string control characters
escape octal Meaning character value =
\b 010 Back space
\E 033 Escape
\e 033 Escape
\f 014 Form feed
\g 007 Bell
\M * Turn on 8’th (parity) bit
\n 012 New line
\r 015 Return
\s 040 Space
\\ 134 Back-slash (\)
* (the next character has its 8’th bit turned on)

to,from
The small positive integers to and from identify the destinationand source
bitmaps for bit-blt operations. The value 0 (zero) represents the current
window bitmap; positive integers name scratch-pad bitmap storage.

width,height
The integers width and height represent a width and height in window
coordinates.

X,Y
The integer pair (X,Y) represents a point in display coordinates. The
suffixes src and dst as in (X_src,Y_src) or (X_dst,Y_dst) are used to
indicate source and destination coordinates respectively. Similarly, the
suffixes 1 and 2 as in (X1,Y1) refer generically to the first or second
coordinate.

x,y
The integers (x,y) represent a point in window coordinates. Whether
that is relative(i.e. 0-999)orabsolutedependsupon thecurrentcoordinate
setting of the window. As with (X,Y) above, the modifiers src,dst,1, and
2 refer respectively to the source, destination, first, and second coordi-
nates.

Macros

All of the C library interface macros expand into printf expressions that convert
their command specification into the MGR stream protocol. Compile time and
run time options are available that globally alter the behavior of these macros to
the specific needs of the client program. The options are detailed in the Using the
Library section of this document. The returned value of the macro expressions
are not meaningful. The macros described here attempt to reflect the actual state
of the system, and may include some inconsistencies that should be cleaned up in

7-10 mgr win- MGR - C Language Application Interface
dows

future releases of the software. Every MGR command (a command identifier -
argument count combination) that is accepted by MGR has a macro describing its
function.

m_addchar()
Inserts a space character at the current character cursor position. The
remaining characters on the line, if any, are shifted to the right.

m_addchars(n)
Inserts n space characters at the current character cursor position. The
remaining characters on the line, if any, are shifted to the right.

m_addline()
Inserts a blank line at current row. The current row, and any below it,
are shifted down one line. The bottom line of text is scrolled off the
window.

m_addlines(n)
Inserts n blank lines at current row. The current row, and any below it
are shifted down. The bottom n lines of text are scrolled off the window.
It is much more efficient to call m_addlines(n) once, than it is to call
m_addline()n times.

m_aligntext()
Moves the current character cursor coincident with the current graphics
point. The current graphics point is set with m_go (x,y). This permits
client programs to position characters at arbitrary pixel locations on the
window.

m_arc(x,y,x1,y1,x2,y2)
An arc centered at (x,y) is drawn counter clockwise from (x1,y1) to
(x2,y2) using the current drawing function (see m_func()).

m_bell()
The window flashes and the bell, if there is one, rings. Even if the window
is totally obscured, its flashing is made visible to the user.

m_bcolor(color)
The background color for text operations is set to color, which is an index
into the color lookup table. This command is ignored on a monochrome
display. See also m_fcolor()and m_linecolor().

m_bitcopy(x_dst,y_dst,wide,high,x_src,y_src)
Copy a rectangle from one place on the window to another with the copy
function set by m_func(n). The rectangular area at x_src,y_src of size
wide by high is combined with the rectangle at x_dst,y_dst according to
the last function set by m_func(). The resultant rectangle is placed at
x_dst,y_dst.

 MGR - C Language Application Interface mgr windows 7-11

m_bitcopyto(x_dst,y_dst,wide,high,x_src,y_src,to,from)
Combine the rectangle at position x_src, y_src of size wide by high of
bitmap from with the rectangle of the same size at x_dst ,y_dst of bitmap
to. The bit-blt function used to combine the two rectangles is set by
m_func(). From and to are scratch-pad bitmap descriptors. Scratchpad
bitmap 0 (zero) represents the current window contents and may be used
for the source , destination or both. If the scratchpad bitmap to does not
already exist, it is created with a size of wide+x_src by high+y_src.

m_bitcreate(n,wide,high)
Create the scratchpad bitmap n of size wide by high. The contents of the
bitmap are undefined. The macro m_bitwriteto() can be used to initialize
the scratchpad bitmap. If the bitmap already exists, the old one is first
discarded. Scratchpad bitmaps may also be created implicitly by spec-
ifying a non-existent bitmap as the destination of m_bitwriteto(),
m_bitcopyto(), m_bitld(), or m_stringto().

m_bitdestroy(n)
Destroys scratchpad bitmap n and frees all the resources associated with
it. If n does not exist, this macro is ignored.

m_bitfromfile(to,name)
Copy the file name on the MGR-host machine into the scratchpad bitmap
to. The scratchpad bitmap to is created if it does not already exist. MGR
returns a single line containing the width and height of the bitmap, or a
blank if the file could not be found or loaded. If name does not start with
/ or ./, The file name is prefixed with MGR’s home directory and /icon/.
Names starting with ./ are evaluated relative to the directory current when
MGR was invoked. The format of the bitmap file is described in dump.h.

m_bitget(from,size,offset)
Upload part of a scratchpad bitmap. Size bytes of scratchpad bitmap
from, starting offset bytes from the beginning of the bitmap are sent to
the client program from MGR. After this call, the client is expected to
read size bytes from the input stream. The image data is sent in raster
scan order, 8 pixels to a byte, padded at the right of every line to 16 bits.
Size should be kept small (about 80 bytes), to avoid potential flow control
problems, with bitmaps uploaded in multiple passes. (See also m_bit-
save()). The data sent by MGR for this macro requires an eight bit data
channel, so its use is discouraged. The macro m_bitfromfile() should be
used instead when possible.

m_bitld(wide,high,x,y,size)
Prepare MGR to download a bitmap to the window. This macro instructs
MGR that the next size bytes received will be interpreted as a bitmap
image to be displayed on the window starting at location (x,y), and of
size wide by high. Downloading bitmaps requires an eight bit channel
between MGR and the client program. Large bitmaps are best sent in
several pieces. The macro m_bitfromfile()should be used instead, where

7-12 mgr win- MGR - C Language Application Interface
dows

possible, as it only requires a seven bit data channel and avoids the
movement of large amounts of data through the channel. If more bytes
are specified than required by the size of the bitmap, they are discarded.
If the number specified by size is insufficient to fill the entire bitmap, the
remainder of the bits are set to undetermined values.

m_bitldto(wide,high,x_dst,y_dst,to,size)
Prepare to download a bitmap to the scratchpad bitmap to. If to does not
already exist, (see m_bitcreate()), it is created automatically with size
wide by high. This function instructs MGR that the next size bytes
received will be interpreted as a bitmap image to be copied to scratchpad
bitmap to at location x_dst,y_dst. This function requires an eight bit
channelbetween MGR and the client program. If more bytesare specified
than required by the size of the bitmap, they are discarded. If the number
specified by size is insufficient to fill the entire bitmap, the remainder of
the bits are set to undetermined values.

m_bitsave(from,name)
Save a scratchpad bitmap from on the file name on the MGR-host file
system. If name does not start with / or ./, name is prefixed with MGR’s
home directory and /icon/. Names starting with ./ are evaluated relative
to the directory current when MGR was invoked. Specifying from to be
0 (zero) saves the entire display contents to the file. The functions
m_windowsave() and m_othersave() are used to save contents of entire
windows.

m_bitwrite(x_dst,y_dst,wide,high)
The rectangular region of the window, starting at x_dst,y_dst of extent
wide by high, is set, cleared or inverted as determined by the previous
call to m_func().

m_bitwriteto(x_dst,y_dst,wide,high,to)
The rectangular region of scratchpad bitmap to, starting at x_dst,y_dst of
extent wide by high, is set, cleared or inverted as determined by the
previous call to m_func(). If the destination to does not exist, it is created
with the dimensions wide by high.

m_broadcast(string)
The message string is broadcast to all windows that are listening.
Listening is turned on by setting the ACCEPT event for a window. (See
m_setevent()). Messages can only be sent to windows whose controlling
terminals have general write permission disabled (i.e. mode 0400) as a
security measure to prevent malicious foreign processes from sending
shells messages that get interpreted and executed as commands.

m_circle(x_dst,y_dst,radius)
A circle of radius radius is drawn, centered at x_dst,y_dst. The points at
the edge of the circle are set, cleared or inverted depending upon the last
call to m_func(). Circles are never scaled, they always appear as circles

 MGR - C Language Application Interface mgr windows 7-13

on the display, regardless of the window shape. The radius is scaled based
upon the average width and height of the window. Use m_ellipse()to
obtain a scaled circle.

m_clear()
The current text region is cleared, and the character cursor is moved to
position (0,0). If no text region is set, m_clear() clears the entire window.

m_cleareol()
All of the characters on the current line, starting with the current character
to the end of the text region, are cleared. If no text region is set,
m_cleareol() clears to the edge of the window.

m_cleareos()
All of the characters in the current text region, from the current character
to the end of the text region, are cleared. If no text region is set, m_clear()
clears to the end of the window.

m_clearevent(n)
Event n is cleared. The integer n is one of: ACCEPT, ACTIVATE,
BUTTON_1, BUTTON_1U, BUTTON_2, BUTTON_2U, COVERED,
DEACTIVATE, DESTROY, MOVE, NOTIFY, PASTE, REDRAW,
RESHAPE, SNARFED, STACK, or UNCOVERED. See m_setevent()
for a description of the events.

m_clearmenu(n)
If menu n exists, it is cleared.

m_clearmode(mode)
Clear one of the following window modes. Except where noted, these
are the default settings. The mode settings are more fully explained in
m_setmode().

M_ABS
Absolute window coordinate mode is turned off. The window is now in
relative window coordinates. All window coordinates range from (0,0)
in the upper left corner to (999,999) at the lower right.

M_ACTIVATE
Bury the window. Unlike the other window modes, bury has no state
associated with it, just a one time action. A window is buried by visually
pushing it to the bottom of the display; any window intersecting it will
appear in front of it.

M_AUTOEXPOSE
Do not automatically activate the window the next time it receives output.

M_BACKGROUND
MGR does not permit the window to update if it is partially or totally
obscured. Data destined for the window is held until the window is
uncovered, or M_BACKGROUND is turned on.

7-14 mgr win- MGR - C Language Application Interface
dows

M_NOINPUT
Accept keyboard input if the window is active.

M_NOWRAP
Wrap the character cursor to the next line when it reaches the right margin
of the text region.

M_OVERSTRIKE
Do not overstrike characters. Text is copied to the window as if m_func(
B_SRC) is set.

M_SNARFHARD
The system cut function fails if any errors are found. This is indicated
by flashing the window. The contents of the cut buffer are left undis-
turbed. Normally this only happens if some process unknown to MGR
scribbles into the region being cut.

M_SNARFLINES
Sets the system cut function to cut individual characters, instead of entire
lines only.

M_SNARFTABS
The system cut function cuts text exactly as it appears on the window.
All interior white space is converted to spaces, all trailing white space is
treated as a new line.

M_STACK
Eventstacking is turnedoff. Eventstringsareonly returned for thecurrent
window context and not for any contexts stacked with m_push().

M_STANDOUT
Characters are drawn in black with a white background.

M_WOB
The window foreground color is set to black, and the window background
is set color to white.

M_DUPKEY
The keyboard escape character is turned off. This mode is turned on by
calling m_dupkey(). There is no corresponding call to m_setmode().

m_deletechar()
The character at the cursor position is deleted. Any characters on the line
to the right of the cursor are shifted left one character position. The last
character on the line is set to a space.

m_deletechars(n)
The next n characters are deleted, starting at the character cursor position.
Any characters on the line to the right of the cursor are shifted left n
character positions. The last n characters on the line are set to space.

m_deleteline()
The line at the cursor position is deleted. Any lines below the cursor are
shifted up one line. The last line is cleared.

 MGR - C Language Application Interface mgr windows 7-15

m_deletelines(n)
The next n lines starting at the cursor position and toward the bottom of
the window are deleted. Any lines below the deleted ones are shifted up
n lines. The last n lines are cleared. It is more efficient to make one call
to m_deletelines() than to call m_deleteline()n times.

m_destroywin(n)
Destroy alternate window n, created by calling m_newwin(). If output
is currently directed to this window, it is automatically re-directed to the
main window. See also m_selectwin().

m_down(n)
Move the character cursor down n tenths of a character height. This may
cause the window to scroll. See also m_left()m_right()and m_up().

m_draw(x,y)
Draw a line from current graphics point to (x,y). The macro m_go() is
used to move the graphics point. The graphics point is left at (x,y), the
end point of the line.

m_dupkey(char)
Every time the character char is typed at the keyboard for this window,
it is sent to the client program twice. This enables clients to reliably
distinguish keyboard input from that generated by menu selections or
events by starting every event and menu string with a two character code
whose first character is char and whose second character is anything but
char.

m_ellipse(x,y,radius1,radius2)
Draw an ellipse centered at (x,y). The values for radius1 and radius2
are the major and minor axis radii. The ellipse is either set, cleared or
inverted determined by the last call to m_func(). The values for radius1
and radius2 are scaled based upon the average width and height of the
window.

m_ellipseto(to,x,y,radius1,radius2)
Draw an ellipse on scratchpad bitmap to centered at (x,y) where
radius1,radius2 are the major and minor axis radii. The ellipse is either
set, cleared or inverteddetermined by the last call tom_func(). The values
for radius1 and radius2 are scaled based upon the average width and
height of the window. If the offscreen bitmap to does not exist, this call
is ignored.

m_fastdraw(x,y,count,data)
The next count bytes of data are sent to MGR are to be interpreted as
lines drawn in fast draw mode, starting at (x,y). Fast draw mode permits
the rapid drawing of short vectors by encoding an x,y displacement
location in a single byte. The x coordinate is contained in the most sig-
nificant 4 bits, the y coordinate in the least significant 4 bits. Values for
x and y represent displacements from the previous location, and range

7-16 mgr win- MGR - C Language Application Interface
dows

from +7 to -8. A 7 is coded as 0xff, a -8 as 0x00. If both x and y are zero
(i.e. 0x8080). The next coordinate is taken to be a move instead of a
draw. An eight bit channel between MGR and the client program is
required for fast draw mode. See also m_rfastdraw().

m_fcolor(color)
The foreground color for text operations is set to color , which is an index
into the color lookup table. This command is ignored on a monochrome
display. See also m_bcolor()and m_linecolor().

m_flush()
Flush the MGR output buffer. This is equivalent to the stdio function
fflush() and is needed only when the M_FLUSH flag is not specified in
the call to m_setup().

m_font(n)
Change to font n. The line positioning is adjusted to keep the baseline
of the new and old fonts the same. Font numbers are small integers
(currently no more than 15). Font 0 (zero) always refers to the built-in
or default font. The actual fonts associated with the font numbers may
be set in the MGR startup file, or changed by clients on the fly (see
m_loadfont()).

m_func(mode)
Set the drawing mode. This specifies the drawing mode for all graphics
and bit-blt operations. The integer mode is one of 16 possible boolean
combinations of the source and destination bit patterns. Combinations
of bit patterns for which there is no source bitmap, such as m_bitwrite()
or m_line() use the modes shown in the middle column of the following
table. Several common modes are specified for the bit patterns in which
the source bitmap is relevent.

Names for bit-blt modes _
source no source comments =
B_OR B_SET default
B_COPY
B_CLEAR
B_COPYINVERTED
B_INVERT
B_XOR
B_AND

Alternately, mode may be derived with a boolean combination of B_SRC
and B_DST, thus B_OR is equivalent to (B_SRC | B_DST).

m_getchar()
The macro m_getchar()is equivalent to the stdio routine getchar(), except
the character is retrieved from MGR via the file pointer m_termin instead
of stdin.

 MGR - C Language Application Interface mgr windows 7-17

m_gets(buff)
A line of characters is read from MGR and placed into buff. The macro
m_gets()returns NULL if the connection to MGR is severed. The macro
m_gets()is equivalent to the stdio fgets() call except input is retrieved
from MGR.

m_getinfo(mode)
This function requests MGR to return information back to the client
program. Mode specifies one of (currently) 16 different requests.
Responsesarealways terminated with a new line for single line responses,
and with a pair of new lines for multi-line responses. Consequently,
clients can request and process information requests using normal line
mode processing. The following list of information requests is under-
stood.

G_ALLMINE
Information about each window that may be written to by the client
program is returned, one line of information per window, as a list of space
separated items. The first two items give the location of the top left corner
of the window in display coordinates. The second two items give the
height and width of the window, also in display coordinates. The next
field contains the last two characters of the pseudotty associated with
each window. Normally the pseudotty is the same for each window
reported. The next field contains the window id, which is 0 (zero) for
the primary window, and the value returned by the call to m_makewin-
dow()for the other windows (if any). The final field contains the visual
status of the window, which is either C_EXPOSED (’e’) if the window
is completely visible, or C_OBSCURED (’o’) if the window is partly or
completely obscured. The window information is printed in order from
front to back. A sample line might look something like: center box; c.
492 2 652 570 p6 2 o which indicates that the window at (492,2) is 652
pixels wide and 570 pixels high, has a controlling pseudotty of /dev/ttyp6,
is alternate window number 2, and is at least partially obscured.

G_ALL
Information about all windows is returned, one line of information per
window, as a list of space separated items. The first two items give the
location of the top left corner of the window in display coordinates. The
second two items give the height and width of the window, also in display
coordinates. The next field contains the last two characters of the
pseudotty associated with each window. Normally the pseudotty is the
same for each window controlled by the same client. The next field
contains the window id, which is 0 (zero) for a primary window, and the
value returned by the call to m_makewindow()for alternate windows.
The final field contains the visual status of the window, which is either
C_EXPOSED (’e’) if the window is completely visible, or C_OB-
SCURED (’o’) if the window is partly or completely obscured. The
window information for each window is printed in order from front to

7-18 mgr win- MGR - C Language Application Interface
dows

back. Thus the first line returned is currently the active window. A
sample line might look something like:
center box; c. 492 2 652 570 p6 0 o
Which indicates that the window at (492,2) is 652 pixels wide and 570
pixels high, has a controlling pseudotty of /dev/ttyp6, is a main window,
and is at least partially obscured.

G_COORDS
A single line is returned containing the location and size of the window
in display coordinates. The first pair of numbers is the position of the
top left corner of the window, the second pair of numbers is the window’s
width and height in pixels.

G_CURSOR
A single line is returned containing the position of the character and the
graphics cursor. The first pair of numbers is the current column and row
in character coordinates and the second pair of numbers is the current
graphicslocation in window coordinates. The graphics cursor location is
reported in either absolute or relative window coordinates, depending
upon the window coordinate mode setting.

G_FONT
A single line is returned which contains current font information. The
first pair of numbers is the character width and height, in pixels. The
next number is the font number as would be used in a call to m_font, and
the final field is the ascii name of the font.

G_ID
A single line is returned containing the window’s alternate window id (
0 for the main window), followed by the number of windows controlled
by the client program.

G_MOUSE The mouse position, in display coordinates are returned,
followed by the most recent button transition, which is one of 1,-1,2,-2.
The numbers 1 and 2 represent buttons one and two on the mouse
respectively. The third mouse button is reserved for system use and is
not accessible to client programs. A negative value means the button was
released; a positive value indicates the button is still depressed.

G_MOUSE2
The mouse coordinates, in window coordinates are returned, followed by
the most recent button transition, which is one of 1,-1,2,-2. The numbers
1 and 2 represent buttons one and two respectively. A negative value
means the button was last released; a positive value indicates the button
is still depressed. If the mouse is above or to the left of the window, a
negative coordinate value is returned. In addition if the window is in
relative coordinate mode, coordinate values between 0 and 999 will be
reported only if the mouse is within the window.

 MGR - C Language Application Interface mgr windows 7-19

G_STATUS
A line is returned containing a single character, either C_EXPOSED (’e’),
C_OBSCURED (’o’), or C_ACTIVE (’a’) depending upon whether the
window is exposed but not the active window, partially or totally
obscured, or exposed and the active window.

G_SYSTEM
A single line containing constant global information is returned. There
are currently four fields:

1) The hostname of the machine MGR is running on, as returned by
gethostname().

2) The width of the display in pixels.

3) The height of the display in pixels.

4) The size of the window borders in pixels.

G_TERMCAP
A single line is returned which contains a TERMCAP entry for MGR.
The TERMCAP entry is always the same, except for lines and columns
entries (li# and co#), which vary to reflect the current window size.

G_TEXT A single line containing four integers is returned with the
current text region size. The first pair of numbers is the top left corner
of the text region, in window coordinates, the second pair of numbers is
the width and height of the text region. If no text region is defined,
implying the entire window is the text region, all four numbers are
returned as 0 (zero).

G_WINSIZE
A single line is returned containing the current number of columns and
rows in the text region. If no text region is defined, the number of lines
and columns for the entire window is returned.

G_FLAGS
A single line is returned containing a hexadecimal number representing
the current window mode bits. Each mode is represented by a bit in the
word. Many of the modes may be set or cleared with m_setmode() or
m_clearmode(). See the discussion of m_setmode() for a detailed dis-
cussion of these flags. The meaningful mode bits are:

0x000001 The window is completely exposed.

0x000004 It is possible to use the systemcut function in this window.
This mode is restored by clearing the window. See m_clear().

0x000008 The window is white text on a black background.

0x000010 The window is in standout mode. Individual characters
are printed in reverse.

7-20 mgr win- MGR - C Language Application Interface
dows

0x000020The windowhas died. If a client sees this flag, the window
is about to go away.

0x000040 Expose the window upon shell output. The window will
be automatically activated when the next character arrives for output
on the window.

0x000080 Permit a partially or totally obscured window to update.

0x000100 Do not kill the window when the original process started
in it dies. This flag may only be set from the startup file.

0x000200 Vi mode is turned on. Pushing the right mouse button
sends the characters:
row column
where row and column specifies the character location the mouse is
sitting on. This has the effect of aligning vi’s notion of the current
character position with the mouse.

0x000800 Keyboard input is refused when the window is active.

0x001000 Auto wrap mode is turned on. The character cursor
automatically wraps to the beginning of the next row when it reaches
the right margin of the text region.

0x002000 Overstrike mode is turned on. Characters are written to
the window using the the current drawing mode, as set by m_func().

0x004000 The window is in absolute window coordinate mode.

0x010000 The system cut function snarfs complete lines only.

0x020000 The system cut function changes spaces to tabs whenever
possible. Tabs are assumed to be every 8 spaces.

0x040000 The system cut function will attempt to snarf text even if
errors occur.

m_go(x,y)
Move the graphics point to the window position (x,y) in the current
window coordinates.

m_gotext()
The graphics point is moved to the bottom left corner of the current
character cursor location.

m_halfwin(X,Y,Dwidth,Dheight)
A window is created at X,Y of size Dwidth by Dheight with no process
connected to it. MGR returns the name of the file, a pseudo-tty, that must
be opened in order to talk to the new window. A process which opens
that pseudo-tty becomes a client program, communicating with MGR and
the new window in the usual fashion. For a single process managing
multiple windows, use m_newwin().

 MGR - C Language Application Interface mgr windows 7-21

m_highlight(X,Y,Dwidth,Dheight)
MGR flashes the rectagular portion of the display starting at X,Y of size
Dwidth by Dheight. This is an experimental capability and may be
removed in the future.

m_incr(n)
The current character position is adjusted to the left or right n units in
window coordinates. The argument n may be signed to indicate move-
ment to the left (if negative) or to the right (if positive or unsigned). This
is useful for client programs dealing with proportionally spaced text.

m_left(n)
Move the character cursor left n tenths of a character width. See also
m_down()m_right()and m_up().

m_line(x1,y1,x2,y2)
Draw a line in the current window from the coordinate (x1,y1) to the
coordinate (x2,y2). The line is either set, cleared or inverted as deter-
mined by the last call to m_func().

m_linecolor(mode,color)
The drawing mode and color is set for all graphics and bit-blt operations.
The integer mode sets the drawing mode, in the manner of m_func(). The
integer color is the index into the color lookup table for the drawing color.
This command is equivalent to m_func()on a monochrome display. See
also m_fcolor()and m_linecolor().

m_lineto(to,x1,y1,x2,y2)
Draw a line on the scratchpad bitmap to from the coordinate (x1,y1) to
the coordinate (x2,y2). The line is either set, cleared or inverted as
determined by the last call to m_func().

m_linkmenu(parent,item,child,mode)
The menus parent and child are linked together. When menu parent is
popped up and item number item (starting from zero) is highlighted,
sliding off to the right of the parent menu causes the child menu to pop
up. When an item is chosen, MGR sends the concatenation of the action
strings associated with each of the popped-up menus, from left to right
(i.e. parent to child). An arbitrary tree of menus may becreated by linking
successive menus together in this manner. It is up to the application to
indicate on the parent menu item that sliding to the right will pop up a
child menu. Typically "->" is used.

The mode argument, if not zero, changes the menu options for the parent
menu. The flag settings, which may be or-ed together (except for
MF_CLEAR) are:

MF_SNIP
By default, when an item in a child menu is selected, the values associated

7-22 mgr win- MGR - C Language Application Interface
dows

with the highlighted items for all of the ancestor menus are concatenated
to the child’s item value. When MF_SNIP is enabled, only the string
associated with the child menu is returned.

MF_PAGE
Normally, whenever a menu is popped-up, the previously chosen item is
initially highlighted. If MF_PAGE is enabled, this behavior is extended
to paged menus. MGR automatically pages through a set of paged menus
to highlight the currently selected item.

MF_AUTO
MGR will automatically slide to the right and pop up a child menu to
highlight the previously selected item.

MF_CLEAR
Clears the mode MF_SNIP, MF_PAGE, and MF_AUTO. See also
m_loadmenu(), m_selectmenu(), and m_unlinkmenu().

m_loadfont(n,name)
The MGR font whose pathname is name is downloaded into MGR,
replacing the font currently located at position n. Any subsequent calls
to m_font()will select the newly downloaded font. The font that used to
be at position n remains available to windows that are already using it,
but is unavailable for futureuse. The formatofMGRfont files isdescribed
in font.h.

m_loadmenu(n,string)
The text string is downloaded into menu position n. The first character
of string is the menu delimiter character. All of the menu item strings
are concatenated, followed by all of their action strings. The menu
delimiter character separates all of the items and actions and terminates
the list. Menus are downloaded at once, as a single entity. The macro
m_selectmenu() is used to have the menu pop-up when a mouse button
is pushed.

m_move(column,row)
The character cursor is moved to character location column,row , where
(0,0) is the top left character position on the window, or on the current
text region if one is specified (see m_textregion()).

m_movecursor(x,y)
Move the character cursor to the position (x,y) in window coordinates.
This permits characters to be placed at arbitrary pixel locations, not just
on character boundaries. Use m_move()to move to a row and column
position.

m_movemouse(X,Y)
Move the mouse to position (X,Y) in display coordinates. Excessive use
of this macro is anti-social.

 MGR - C Language Application Interface mgr windows 7-23

m_moveprint(x,y,string)
Print string at the window coordinate (x,y). This macro is equivalent to
calling m_movecursor() followed by m_printstr().

m_movewindow(X,Y)
Move the window to the display location (X,Y) in display coordinates.
If the new position is too close to the edge of the display for the window
to fit entirely at the requested location, the right edge or bottom of the
window is truncated at the boundary of the display. An alternate window
is created with the size and location indicated. The arguments X and Y
specify the upper left corner of the window, Dwide and Dhigh the size.
If the window is to be to fit at the requested location, its size is truncated
appropriately. MGR will return a window number if the creation is
successful, or a newline if the window could not be created. The newly
created window is made the active window. The macro m_selectwin()is
used to enable writing on the newly created window.

m_nomenu()
Deselect all menus. No menu will pop-up when the middle mouse button
is pressed. This call does not delete the menu, it simply disassociates it
from the button.

m_nomenu2()
Deselect all menus. No menu will pop-up when the right mouse button
is pressed. This call does not delete the menu, it simply disassociates it
from the button. This macro should be combined with m_nomenu() but
is separate for historical reasons.

m_othersave(id,sub,name)
The bitmap contents of the window identified as id.sub is saved in the
file name in bitmap format (see dump.h for a description of the bitmap
format). The window id can be determined either by calling m_getinfo(
G_ALL) or from the event M_ACCEPT (see m_setevent()). See also
m_windowsave() and m_bitsave().

m_pagemenu(parent,child)
Connect menu child to the bottom of menu parent to permit a long menu
to be paged. Mousing off the bottom of the parent menu automatically
pops up the child menu, which in turn may be the parent of another menu.
See also m_unpagemenu(), m_linkmenu() and m_unlinkmenu().

m_pop()
Pop the window context. The last window context saved by calling
m_push() or m_pushsave() is restored. If no environments have been
pushed, m_pop()is ignored.

m_popall()
Like m_pop()above, except all environments pushed since the first call
to m_setup()are popped. The macro m_popall() is typically used as part
of the clean up before client program termination.

7-24 mgr win- MGR - C Language Application Interface
dows

m_printstr(string)
Print string on the window at the current character cursor location. This
is equivalent to the stdio function printf with a %s format specified and
the output directed toward the file pointer m_termout instead of stdout.

m_push(mode)
Certain parts (stack modes) of the current window environment may be
moved to a stack, to be restored ata later time with m_pop()or m_popall().
Any combination of the following pieces of the window environment,
called a window context, may be placed on the window stack.

P_BITMAP
All currently defined scratchpad bitmaps are moved to the stack and
become undefined in the current window context.

P_CURSOR
The current character cursor and graphics point positions are saved on
the stack.

P_EVENT
All currently definedevents are moved to the stack and become undefined
in the current window context.

P_FLAGS The window modes, as set with m_setmode()are moved to the
stack. The modes revert to their default settings in the current window
context.

P_FONT
The current font setting is copied to the stack. If this font is subsequently
deleted, by writing over it with a different font, the original font setting
is retained, even if it can no longer be accessed using m_font().

P_MENU
All downloaded menus and menu links are moved to the the stack along
with the currently selected menu number. The menus become undefined
in the current context.

P_MOUSE
The mouse cursor location is saved on the stack. Its current location
remains the same.

P_POSITION
The window size and location is saved on the stack. The current size and
location are maintained.

P_TEXT
The text region location and size are saved on the stack. The text region
in the current context is reset to the entire window.

P_WINDOW
The current image contents of the window is copied to the stack. This is
done without altering the current contents of the window. Stack modes
are combined by or-ing them together to form a saved window context,

 MGR - C Language Application Interface mgr windows 7-25

such as: m_push(P_MENU|P_EVENT) which will save all events, and
menus but leave everything else alone. All stack modes that require client
download data revert to their default settings when they are pushed. For
example, after m_push(P_MENU|P_EVENT|P_MOUSE) is called, no
events or menus are currently defined, but the mouse remains where it
is. The defined constant P_ALL refers to all of the modes.

m_pushsave(mode)
Certain parts (stack modes) of the current window environment may be
copied to a stack, to be restored at a later time with m_pop()or m_popall().
The macro m_pushsave() differs from m_push()in that downloaded data,
suchas menus eventsor scratchpad bitmaps are copied to the stack instead
of moved, and thus remain in effect after the call to m_pushsave(). The
current window context is thus unaffected. Any combination of the
following pieces of the window environment may be copied to the
window stack.

P_BITMAP
All currently defined scratchpad bitmaps are copied to the stack.

P_CURSOR
The currentcharacter and graphics cursor positions aresaved on the stack.

P_EVENT
All currently defined events are copied to the stack.

P_FLAGS
The window modes, as set with m_setmode(), are copied to the stack.

P_FONT
The current font setting is copied to the stack. If this font is subsequently
deleted, by writing over it with a different font, the original font setting
is retained, even if it can no longer be accessed using m_font().

P_MENU
All downloaded menus and menu links are copied to the the stack along
with the currently selected menu number.

P_MOUSE
The mouse cursor location is saved on the stack.

P_POSITION
The window size and location are saved on the stack.

P_TEXT
The text region location and size are saved on the stack.

P_WINDOW
The current image contents of the window is copied to the stack. Stack
modes are combined by or-ing them together to form a saved window
context, such as: m_push(P_MENU|P_EVENT) which will save all
events, and menus but leave everything else alone.

7-26 mgr win- MGR - C Language Application Interface
dows

m_put(string)
String is put into the global snarf buffer. There is one common buffer
for all clients programs. The macro m_snarf() is used to retrieve the
contents of the buffer. The MGR system cut function places text in this
buffer, whereas the system paste function pastes text from this buffer.

m_putchar(c)
The character c is written in the window at the current character cursor
location. This function is like the stdio putchar(c), only directed toward
the client’s window.

m_rcircle(radius)
A circle of radius radius is drawn, centered at the current graphics point.
The points at the edge of the circle are set, cleared or inverted depending
upon the last call to m_func(). Circles are always drawn as circles, both
inabsolute and in relative windowcoordinates. The radius is scaled based
upon the average width and height of the window.

m_rellipse(radius1,radius2)
Draw an ellipse centered at the graphics point. The two radii, radius1
and radius2 specify the major and minor axis. The ellipse is either set,
cleared,or inverteddetermined by the last call to m_func(). If the window
is in relative coordinate mode, radius1 and radius2 are scaled based upon
the average width and height of the window.

m_resetesc()
The MGR escape character is reset to its to default value (’\033’). This
turns off the debugging mode turned on by m_setesc().

m_rfastdraw(count,data)
The next count bytes of data are sent to MGR are to be interpreted as
lines drawn in fast draw mode, starting at The current graphics point.
Fast draw mode permits the rapid drawing of short vectors by encoding
an x,y displacement location in a single byte. The x coordinate is con-
tained in themost significant4bits, the ycoordinate in the least significant
4 bits. Values for x and y represent displacements from the previous
location, and range from +7 to -8. A 7 is coded as 0xff, a -8 as 0x00. If
both x and y are zero (i.e. 0x8080). The next coordinate is taken to be
a move instead of a draw. An eight bit channel between MGR and the
client program is required for fast draw mode. See also m_fastdraw().

m_right(n)
Move the character cursor right n tenths of a character width. See also
m_left()m_down()and m_up().

m_scrollregion(first_row,last_row)
This sets up a text region as a VT100-like scrolling region. The entire
width of the window from lines first_row to last_row inclusive becomes
the text region. See also m_textregion().

 MGR - C Language Application Interface mgr windows 7-27

m_selectmenu(n)
This macro is used to indicate menu n pops-up in response to pressing
the middle mouse button. Menus are downloaded (with m_loadmenu())
first, then selected. Only one menu may be selected at a time on each
button. If the button is already down when this call is made, and there is
not currently a menu associated with the button, then the menu just
selected pops-up immediately. This last feature may be used to pop up
different menus in a context sensitive way.

m_selectmenu2(n)
This macro is used to indicate menu n pops-up in response to pressing
the right mouse button. Menus are downloaded (with m_loadmenu())
first, then selected. This macro functions the same as, and should be
combined with m_selectmenu() above, but exists separately for historical
reasons.

m_selectwin(n)
Select alternate window n for output. Alternate windows are first created
by m_newwin(). All output goes to the selected window until either
m_selectwin()is called to change windows, or the selected window is
destroyed. If n is 0 (zero) or the currently selected window is destroyed,
the main, or original window is selected. Input from all windows is send
to the client program on the same input channel. The macro m_setevent(
ACTIVATE) may be used to help decide what window generated the
input by associating a unique string with each window’s ACTIVATE
event. The selected window and the active window are specified inde-
pendently. Selecting a window does not make it the active window, and
creating a new window, although it is created as the active window, is
not automatically selected.

m_sendme(string)
The argument string is sent back to the client process as if it was typed
in at the keyboard.

m_sendto(n,string)
The message string is send to window n. A unique window identifier, n
is determined with either m_setevent() using the %w option, or with
m_getinfo(). In general, the window id n is the process id (pid) of the
client program started by MGR when the window was created. If the
target window has turned on ACCEPT with m_setevent(), string is
received by the client program associated with the target window as part
of the ACCEPT event. General write permissions must be disabled on
the target client’s pseudotty in order for the message to be received, to
prevent unsuspecting shells from interpreting messages sent by
unscrupulous processes as commands. See also m_broadcast().

7-28 mgr win- MGR - C Language Application Interface
dows

m_setesc(c)
This macro call causes the character c to be used as the MGR escape
character by the library package (instead of ‘\033’). This permits viewing
the output stream to MGR without causing the commands to be executed.

m_setecho()
Turn on character echoing, if possible. Character echoing is normally
disabled by clients to inhibit information from MGR, as from calls to
m_getinfo(), from echoing on the window.

m_setevent(n,string)
An event string, string is sent to the client program by MGR upon the
occurrence of the specified event n. The event string is typically read by
the client program using m_gets(). Event strings are never sent in
response to an event unless specifically requested by the client program.
Events are one of the following types.

ACTIVATE
The window became the active window. It is at the front of the display,
and is currently receiving both mouse and keyboard input.

BUTTON_1
The right mouse button was depressed. This event is sent only to the
active window.

BUTTON_1U
The right mouse button was released. This event is sent only to the active
window.

BUTTON_2
The middle mouse button was depressed. This event is sent only to the
active window.

BUTTON_2U
The middle mouse button was released. This event is sent only to the
active window.

COVERED
The window was partially or completely obscured by another window.

DEACTIVATE
The window was deactivated, it is no longer the active window.

REDRAW
The display was redrawn, either by selecting the redraw option from the
system menu, or by keying LEFT-r from the keyboard. Only windows
that are exposed receive the REDRAW event. The images of obscured
windows are restored automatically by MGR. The client program is
expected to regenerate the contents of its window in response to the
REDRAW event.

 MGR - C Language Application Interface mgr windows 7-29

RESHAPE
The window was reshaped. If the user selects the system reshape option,
the RESHAPE event is sent, even if the window stays the same shape.

UNCOVERED
The window, previously obscured, was uncovered. If the window also
became the active window, the UNCOVERED event is sent before the
ACTIVATE event.

MOVE
The window was moved.

DESTROY
The window was destroyed. Only alternate windows (as created by
m_newwin()) cause DESTROY events to be sent. If the main window
is destroyed, the client program is sent a hangup signal, and its connection
to MGR is severed.

ACCEPT
Messages are accepted from client programs running in other windows
(see m_sendto()). The content of the message is obtained by specifying
the %m parameter as part of the event string, as is fully described below.

NOTIFY
Register a name with MGR, and make this name available to client
programs. This name is available to other clients, either by a call to
m_getinfo(G_NOTIFY) or with the %n parameter described below.
Unlike the other events, the notify string is never sent back to the client
program by MGR, but is used to register a name for the window.

SNARFED
Text was put into the snarf buffer either by a client program with m_put()
or by use of the system cut function.

PASTE
Text is about to arrive as a result of the system pastefunction.

Some event strings may contain substitutable parameters in the manner of printf
format specifiers (i.e. %X). These parameters are applicable only to certain types
of events. In any case, the % character may be forced by doubling it, as in %%.
Wheremore thanonedata itemreplacesthe formatspecifier, the itemsareseparated
by a space character. For the event strings BUTTON_1 and BUTTON_2, several
parameters cause MGR to sweep out some object in response to mouse movement,
and report back the size of the swept object when the button is released. Any one
of lines, boxes, text, or rectangles may be swept out with this mechanism. Initial
parameters may be associated with a sweep event by listing them as comma
separated integers following the % and preceding the sweep command character.
The parameters (if any) set the initial size of the object to be swept, in the same
coordinate system in which the sweep extend is reported.

7-30 mgr win- MGR - C Language Application Interface
dows

%r Depressing the button causes MGR to sweep out a rectangle in response
to moving the mouse, in a manner similar to the system reshape function.
The initial parameters set the initial width and height of the rectangle.
When the button is released, the coordinates of the starting and ending
points of the rectangle in response to moving the mouse, in window
coordinates, are substituted for the %r.

%R Depressing the button causes MGR to sweep out a rectangle, as in %r
above, only the the result is in displaycoordinates.

%b Depressing the button causes MGR to move a rectangle in response to
moving the mouse, in a manner similar to the system move function. The
initial parameters set the initial width and height of the rectangle to be
moved. When the button is released, the current coordinates of the box’s
corner is returned in window coordinates, substituted for the %b.

%B Depressing the button causes MGR to move a rectangle in response to
moving the mouse, in a manner similar to the system move function. The
initial parameters set the initial width and height of the rectangle to be
moved. When the button is released, the current coordinates of the box’s
corner is returned in display coordinates, substituted for the %b.

%l Depressing the button causes MGR to sweep out a line. One end of the
line remains fixed at the graphics point while the other end of the line
tracks the mouse position. The initial end point of the line may be
specified as a displacement from the graphics point as part of the initial
parameters. When the button is released, the coordinates of the starting
and ending points of the line, in window coordinates, are substituted for
the %l.

%t Depressing the button causes MGR to sweep out text, in a manner
equivalent to the system cut function. Upon the release of the button, the
%t is replaced by the starting character coordinate of the cut region,
followed by character distance to the ending point in columns and lines
respectively. For example, The event string sweep[%t] might return
sweep[17 5 6 0], indicating the user swept out a six character word on a
single line, starting on column 17, row 5. An inital size may ber specified
in number of rows and number of columns. The remaining format spe-
cifiers are replaced by the information described below No sweep action
is performed.

%p The %p is replaced by the current mouse coordinates, in window
coordinates.

%P The %P is replaced by the current mouse coordinates, in character
coordinates.

%n If the mouse cursor is over a window whose NOTIFY event is set, the
text of that message is substituted for the %n.

 MGR - C Language Application Interface mgr windows 7-31

%w If the mouse cursor is over a window whose NOTIFY event is set, the
window_id of the clicked on window is substituted for the %w. This
window_id may be used by m_sendto()to send the clicked-on window a
message.

%S If the mouse cursor is over a window whose NOTIFY event is set, the
length of that message is substituted for the %S.

The ACCEPT event is used to receive messages from other client programs. The
following substituteable parameters may be used as part of the event string.

%f The window_id of message sender, as used in m_sendto(), replaces the
%f.

%m The text of message sent by the other client program replaces the %m

%s The length of the message, in characters, replaces the %s. For example,
a call to
center box; c. m_setevent(ACCEPT,"Message from (%f), (%s) long is:
%m")
might cause MGR to return
center box; c. Message from (3214), (2) long is: HI
after the client program whose window id is 3214 uses m_sendto()to send
the message "HI".

%p As with the BUTTON events above, %p is replaced by the current mouse
position in window coordinates.

%P As with the BUTTON events above, %P is replaced by the current mouse
position in character coordinates. For the SNARFED event string, the
following substitution parameters are recognized.

%f The window id of the window filling the snarf buffer replaces the %f.

%c The current length of the snarf buffer, in characters, replaces the %c.

%C The contents of the snarf buffer replaces the %C. At present, only the
first 250 characters of the snarf buffer may be returned via the %C
parameter. Use m_snarf()to read the entire buffer.

The PASTE event string, recognizes the %c specifier as described under
SNARFED above.

m_setmode(mode)
Various window modes may be set or cleared (see m_clearmode())
independently. These modes are:

M_STANDOUT
The window is put in standout mode. All characters are written with their
foreground and background colors reversed.

M_WOBThe sense of white and black is reversed for the entire window,
not just for characters as is M_STANDOUT.

7-32 mgr win- MGR - C Language Application Interface
dows

M_AUTOEXPOSE
The next character to be typed on the window causes it to automatically
become the active window.

M_BACKGROUND
Output goes to the window even if it is partially or totally obscured. The
data in exposed portions of the window is seen immediately. Data in
covered portions of the window is saved by MGR and restored when the
covered portions are exposed.

M_NOINPUT
Keyboard input isprohibited. All input fromthekeyboard is heldbuffered
by MGR until either M_NOINPUT is cleared, or a different window is
made the active window. In the latter case the input goes to the newly
activated window. This flag is automatically turned off when the user
activates the window. This feature is for client programs that want one
of their windows to come to the front just long enough to notify the user
of some event, but do not want to accidently intercept keyboard input
while the user is merrily typing to some other client.

M_NOWRAP
The character cursor does not automatically jump to the left edge of the
next line as it reaches the right edge of its text region. After the right
margin is passed, the cursor and any subsequent text disappear past the
right edge of the window.

M_OVERSTRIKE
Text is written to the windowwith themode specified bym_func() instead
of the normal copy mode. In copy mode, the characters completely
obliterate their destination instead of combining with it.

M_ABS
The window is set to absolute coordinate mode. The upper left edge of
the window, just inside the border is at position (0,0). All other locations
are measured relative to that corner in pixels.

M_ACTIVATE
The window is made the active window, pops to the front of the display,
and obtains all keyboard and mouse input.

M_SNARFLINES
The system cut function only cuts entire lines. If any text on a line is
swept out, the entire line of text is included.

M_SNARFTABS
The system cut function attempts to turn white space into a minimal
combination of spaces and tabs. Tab are set at every 8 columns.

M_SNARFHARD
The system cut function attempts to cut text even if the window contents
have been corrupted. Unidentifyable characters are returned as C_NO-
CHAR (’?’).

 MGR - C Language Application Interface mgr windows 7-33

M_STACK
Any events pushed on the window stack when this flag is set will be sent
in addition to any currently active events. This setting is useful for filters
which need to receive events, yet still permit clients running under them
to receive events as well.

m_setnoecho()
Character echoing to the window is disabled if possible. Character
echoing is normally disabled by clients to inhibit information from MGR,
as from calls to m_getinfo() from echoing on the window.

m_setnoraw()
Normal terminal input processing is in effect. Input is buffered by lines,
and all normal line editting and keyboard interrupt generation is in effect.

m_setraw()
Every character is available as entered, no input processing is done. This
is typically called raw mode. Raw mode is not always available, in which
case the macro call is ignored.

m_shapewindow(X,Y,Dwidth,Dheight)
The window is reshaped to position (X,Y) and with size Dwidth by
Dheight. As only the active window may be reshaped, m_shapewin-
dow()activates the window if it is not already active. The new size of the
window is not guaranteed; the width or height may be truncated to the
right or bottom edges of the display. The macro m_getinfo()can be used
to determine the actual window size.

m_size(columns,rows)
The size of the window is changed so that it fits exactly columns by rows
of characters in the current font. The window may be truncated at the
right or bottom edge of the display if it is too large to fit on the display
at its current position.

m_sizeall(X,Y,columns,rows)
The window is reshaped to position (X,Y) on the display, and resized to
fit columns and rows of text. As only the active window may be reshaped,
m_shapewindow() activates the window if it is not already active. The
new size of the window is not guaranteed; the width or height may be
truncated to the right or bottom edges of the display. The macro m_ge-
tinfo()can be used to determine the actual window size.

m_snarf()
The application is sent the contents of the global snarf buffer, if any, as
specified by the last call by a client programs call to m_put() or by use
of the system cut function.

m_sleep()
This call causes MGR to suspend the processing of characters to the

7-34 mgr win- MGR - C Language Application Interface
dows

window. After a chunk of output for all other windows has been pro-
cessed, output processing resumes. This does not normally take very
long, making m_sleep() almost a no-op.

m_standend()
Inverse video mode as set by m_standout() is turned off. This is exactly
equivalent to m_clearmode(M_STANDOUT).

m_standout()
Inversevideomode is turnedon. This is exactlyequivalent tom_setmode(
M_STANDOUT). The color of the characters and their backgrounds are
interchanged.

m_stringto(to,x_dst,y_dst,string)
The text string is printed starting at the location (x_dst,y_dst) on
scratchpad bitmap to. The text is clipped to fit in the bitmap, and no
special command processing is done on string. If to is 0 (zero), The text
is printed on the window, but text region boundaries are ignored. This
is the only way to get text into a window outside of the text region.

m_textregion(x,y,wide,high)
A subregion within the current window starting at (x,y) and of size wide
by high is defined within which all text is restricted. All functions and
information that deals in character coordinates views the text region as
if it was the entire window. As soon as the text region is defined, the
character cursor is moved to row and column (0,0), which is now located
at the point (x,y). Graphics output is not affected by text regions.

m_textreset()
The text region (defined by a call to m_textregion()) is reset to be the
entire window. This is the default setting.

m_unlinkmenu(parent,item)
The menu link associating a child menu with the menu parent at item
(counting from zero) is removed (see also m_linkmenu()). This function
does not change the menus, only their connections.

m_unpagemenu(parent)
The link associating the menu parent with a child menu is removed. See
also m_pagemenu().

m_up(n)
Move the character cursor up n tenths of a character height. This may
cause the window to scroll down. See also m_left()m_right()and
m_down().

m_whatsat(X,Y)
MGR returns to the client program a line indicating what is at the display
coordinates (X,Y). If that location is occupied by a window, a line
containing the window’s controlling terminal, alternate window number,
and window id is returned in a space separated list. If the location (X,Y)
is not in a window, MGR returns a newline.

 MGR - C Language Application Interface mgr windows 7-35

m_windowsave(name)
The current image contents of the window is saved in the file name on
the MGR-host machine in MGR bitmap format. File names beginning
with "./" are evaluated relative to the current directory when MGR was
started. See also m_othersave() and m_bitsave().

Functions

The functions listed below have packaged common sequences of macro calls
together to provide a slightly higher level of interface than the macros alone. They
are still low level, and have no pretense of completeness. Except where noted, all
of the functions return a value greater than zero on success, and a value less than
zero upon failure. The functions fail only if they read an unexpected value from
MGR. Clientprogramsmayuse the functionm_lastline()inanattempt todetermine
what input caused the failure. Those functions which expect data from MGR
automatically flush any pending output before reading, and unless the M_MO-
DEOK flag is set, attempt to turn off character echoing to prevent data returned
by MGR from echoing back on the window.

int
get_all(list)
struct window_data *list;

The current position size and status of all windows on the display is
returned in list. The number of in windows on the display is returned.
List should be large enough to hold a status entry for each window. The
window_data structure is defined in term.h.

int
get_client(list)
struct window_data *list;

The current position size and status of the client programs main and
alternate windows is returned in list. The number of windows owned by
the client program is returned. List should be large enough to hold a
status entry for each window. The window_data structure is defined in
term.h.

int
get_colrow(columns,rows)
int *columns, *rows;

The number of columns and rows in the current text region is returned in
columns and rows respectively. For any NULL argument, no value is
returned.

int
get_cursor(column,row)
int *column, *row;

7-36 mgr win- MGR - C Language Application Interface
dows

The current character cursor position is placed in column and row. For
any NULL argument, no value is returned.

int
get_eachclientwin(windatap)
struct window_data *windatap;

Get the window parameters for each window in the current window set,
one window at a time. This function returns 1 if window_data structure
has been filled, 0 otherwise. It is important to call get_eachcleintwin()
in a tight loop that doesn’t exit until it returns 0, so that all the data is
picked up. This function is preferred to get_client() because you don’t
need to know the maximum number of windows you are likely to see.

int
get_eachwin(windatap)
struct window_data *windatap;

Get the window parameters for all the windows, one window at a time.
This function returns 1 if window_data structure has been filled, 0
otherwise. It is important to call get_eachwin() in a tight loop that doesn’t
exit until it returns 0, so that all the data is picked up. This function is
preferred to get_all() because you don’t need to know the maximum
number of windows you are likely to see.

int
get_font(wide,high)
int *wide, *high;

The character size of the current font, in pixels is placed in wide and high.
For any NULL argument, no value is returned. The function returns the
current font number, as would be used in a call to m_font().

int
get_mouse(x,y)
int *x, *y;

The current mouse position, in window coordinates, is placed in x and y.
For any NULL argument, no value is returned. The function returns the
current mouse button state, which is in the range of -2 to +2 upon success,
a value less than -2 upon failure. See m_getinfo(G_MOUSE) for a
discussion of the return values.

int
get_param(host,xmax,ymax,border)
char *host;
int *xmax, *ymax, *border;

The MGR-host, display size (in pixels) andwindow bordersize (in pixels)
is placed in the arguments host,xmax,ymax, and border. For any NULL
argument, no value is returned.

 MGR - C Language Application Interface mgr windows 7-37

int
get_size(X,Y,Dwidth,Dheight)
int *X, *Y, *Dwidth, *Dheight;

Thepositionof thewindowon the display, indisplaycoordinates is placed
into X,Y,Dwidth and Dheight. For any NULL argument, no value is
returned.

char *
get_termcap()

A string containing a TERMCAP entry, suitable for placing into the
TERMCAP environment variable is returned. The function get_term-
cap() returns NULL upon failure.

int
is_active()

The function is_active() returns TRUE if the window is the active win-
dow.

void
menu_load(n,count,text)
int n;
int count;
struct menu_entry *text;

A menu is downloaded to MGR at position n. The integer count is the
number of menu items to be down-loaded, and text is an array of menu
item/value pairs. The structure menu_entry is defined in term.h.

int
m_bitfile(to,name,widep,highp)
int to;
char *name;
int *widep, *highp;

Given a bitmap id, to and an icon name, have MGR load that icon into
that scratchpad bitmap, returning the icon width and height, in pixels, via
the given integer pointers. Return a positive number if successful. If the
icon is not loaded, set the width and height values to 0 and return 0. This
function is identical to m_bitfromfile()plus the needed interception of the
line returned from MGR.

void
m_bitload(x,y,wide,high,data)
int x,y;
int wide,high;
register char *data;

7-38 mgr win- MGR - C Language Application Interface
dows

The bitmap image pointed at by data is down-loaded to the window at
position (x,y) in window coordinates. It is up to the client program to
insure an 8 bit channel exists between the client and MGR. The integers
wide and high specify the size of the bitmap in pixels.

char *
m_lastline()

The last input from MGR to a library function is returned. The data is
kept in a static buffer which is overwritten at each request.

int
m_makewindow(X,Y,Dwidth,Dheight)
int X, Y, Dwidth, Dheight;

An alternate window is created as the active window, at display coordi-
nates (X,Y) and of size Dwidth by Dheight pixels. If the window is too
big to fit on the display, its width and height are truncated. The alternate
window’s window-id is returned if the window was created successfully.
The macro m_selectwin() is used to write on the newly created window.

int
m_setup(mode)
int mode;

This function initializes the library. It must be called before any other
function or macro. The argument mode is one or more of the flags
M_FLUSH, M_DEBUG, or M_MODEOK or-ed together. If M_FLUSH
is present, all macros and function flush output to MGR after each macro
call. This is slightly less efficient than letting the client program flush
the data (see m_flush()) but prevent inadvertent buffering problems. The
M_DEBUG flag forces the macro package to read and write from stdin
and stdout respectively. Normally /dev/tty is opened for reading and
writing to permit standard input or output redirection while still main-
taining a connection to MGR. If /dev/tty can not be opened, as would be
the case for clients invoked through rsh, the M_DEBUG flag is turned
on, andstdinand stdout areused instead. The M_MODEOKflag instructs
those functions which expect data from MGR to assume the terminal
modes are set appropriately. Otherwise, the functions attempt to turn off
character echoing and turn on line mode before fetching data from MGR.
The functions m_ttyset() and m_ttyreset() can be used to set and reset the
terminal modes. The function m_setup() returns its argument, with the
M_DEBUG flag or-ed in if /dev/tty can not be opened.

void
m_ttyreset()

The terminal modes are restored to their state just prior to the last call to
m_ttyset(). Calls to m_ttyset() and m_ttyreset() may be stacked up to ten
levels.

 MGR - C Language Application Interface mgr windows 7-39

int
m_ttyset()

The terminal is set in a state suitable for data exchange with MGR.
Character echoing is turned off, and line processing mode is enabled. The
function returns zero (0) if it successfully retrieves the terminal modes,
-1 otherwise.

Using the Library

Clients using The C Interface Library should specify:

#include "term.h"

which also includes <stdio.h>

if it has not already been included. Programs are compiled either with

cc -o foo foo.c term.o -I$(lib)

where $(lib) is the MGR include directory or simply

cc -o foo foo.c -lmgr

if the library is installed in a standard location. The file term.o contains the
functions listed in the last section. Several compile time options are available to
the client program using the library. Normally, the library setup routine, m_setup()
attempts to open /dev/tty to communicate with MGR. Client programs may define
the C preprocessor symbols M_DEVICEIN or M_DEVICEOUT to override the
selection of /dev/tty for input or output respectively. After each macro call, the
flush flag M_FLUSH is tested to see if output should be flushed to MGR. If the
C preprocessor symbol M_NOFLUSH is defined, before the client program
includes term.h, The flush flag is never tested, and it becomes the responsibility
of the client program to insure output is flushed at the appropriate times.

Several external variables maintained by the library are accessible to client pro-
grams. The stdio FILE pointers m_termin and m_termout are used for directing
output to, and receiving input from MGR. These file pointers are initialized in
m_setup(), and may be changed by client programs after m_setup() is called. The
integer m_flags contains the current library mode settings, as returned by m_se-
tup(). The M_MODEOK and M_FLUSH bits of m_flags may also be changed at
any time after m_setup() is called. The integer m_envcount contains the current
window context depth, and is used by m_popall()to pop the appropriate number
of contexts. M_envcount should not be changed by client programs. Finally, the
character m_menuchar defines the menu separator character used by menu_load().
This character, set to ‘\005’ by the library package, can be changed to any character
that will not appear as part of a menu
item or action.

7-40 mgr win- MGR - C Language Application Interface
dows

Glossary

absolute coordinates
Absolute coordinates is a coordinate system used in windows measured
in units of pixels.

active window
The active window is the window logically in the front of the display,
which is receiving keyboard and mouse input.

alternate window
An alternate window is an additional window created by a client program
that shares the communication channel with the main window.

bitmap
A bitmap is a rectangular array of bits, or pixels if the bitmap is currently
on the display.

channel
The channel is the bidirectional byte stream connecting MGR with the
client program. The channel is usually the program’s standard input and
output.

character coordinates
Character coordinates is the coordinate system used in windows for
counting characters in columns and rows.

character cursor
Thecharactercursor is the location in thewindowwhere thenextcharacter
will be placed. The cursor location is always highlighted on the active
window.

child menu
A child menu is the menu that will pop up when the user slides off to the
right of a popped up parent menu.

client program
A client program is any Unix command that is running in an MGR
window. Client programs may be existing programs, as might be found
in /bin or new applications written specifically to take advantage of the
windowing environment.

client-host
The client-host is the computer that the client program is running on. It
is often the same as the MGR-host machine, but it does not need to be.

display coordinates
Display coordinates is a coordinate system used to measure pixels on the
display. The top left corner of the display is at (0,0), with x increasing
to the right, and y increasing down.

 MGR - C Language Application Interface mgr windows 7-41

exposed
A window is exposed if it is entirely visible.

graphics point
Thegraphics point is a locationon thewindow, measured in the prevailing
window coordinate system, that may serve as a reference location or
origin for many of the graphics operations.

listener
A listener is a window that has turned on the ACCEPT event and is willing
to receive messages from other client programs.

main window
A client program’s main window is the window the program was started
in. The client program may create and destroy alternate windows, but
not itsmain window. If theuser destroysa client program’smain window,
the connection to MGR is severed, and the client program receives a
hangup
signal.

MGR-host
The MGR-host is the computer that MGR is running on.

mouse cursor
The mouse cursor is a small bitmap or icon that tracks the movement of
the mouse on the display. Normally the mouse cursor is a small arrow
pointing north west.

obscured
A window is obscured when it is partially or totally covered by another
window.

parent menu
A menu is called a parent menu when sliding off to the right of a selected
item causes another menu or child menu to pop up.

relative coordinates
Relative coordinates is a coordinate system for windows where a single
unit represents one thousandth of the way across (or down) the window.

scratchpad bitmap
A scratchpad bitmap is a chunk of memory, allocated by MGR for use
by a client program, that may hold a bitmap image that is not on the
display.

snarf buffer
The snarf buffer is a buffer maintained by MGR of arbitrary size that is
accessible by all client programs.

target window
A target window is a window that is to receive a message from another
window.

7-42 mgr win- MGR - C Language Application Interface
dows

text region
A text region is the part of the window in which character text and the
functions that operate on characters work. The text region may be the
entire window (the default) or a rectangular subregionwithin the window.

window border
The window border is a thin black border around every window that
separates the window from the rest of the display.

window context
A window context contains the values for one or more aspects of the
window’s state. Window context a may be saved on a stack, and then
restored at some later time.

window id
A window id is a unique number assigned to every window that may be
used as an identifier when sending a message to the window. Window
idshave two parts, the first part is theprocessnumberof theclient program
that was started when the window was created, the second part is the
windows alternate window number, or zero for a main window.

Sample Client Program

This program, called close, closes, or iconifies a window. It is not a terribly useful
application in its own right, but it does exercise several of the library calls. When
close starts up, it makes the window smaller, moves it toward the top of the display,
then writes the word "closed" in it. If the window is covered by another window,
it changes the word "closed" to "hidden", then flashes its window every 15 seconds
as long as the window is covered. If the window is then uncovered, the word
"hidden" gets changed back to "closed". Activating the window causes close to
restore the window’s original shape and contents, then exit.
/* iconify a MGR window */

#include <signal.h>
#include "term.h"

#define TIME 15 /* time interval for reminder */
#define CONTEXT P_POSITION | P_WINDOW | P_FLAGS | P_EVENT | P_CURSOR

static char line[80]; /* event input buffer */

main()
{
int clean(), timer(); /* interrupt routines */
int x,y; /* window position on display */
char *msg = "closed"; /* closed window "icon" */

/* setup the window environment */

m_setup(M_FLUSH); /* setup i/o, turn on flushing */
m_push(CONTEXT); /* save current window context */
m_setmode(M_NOWRAP); /* don’t auto-wrap at right margin */
m_ttyset(); /* set up tty modes */

/* catch the appropriate signals */

signal(SIGTERM,clean); /* in case we get terminated */
signal(SIGALRM,timer); /* for the reminder service */

 MGR - C Language Application Interface mgr windows 7-43

/* iconify the window */

get_size(&x,&y,0,0); /* fetch window coordinates */
m_sizeall(x,10,strlen(msg),1);/* move and resize window */
m_clear(); /* clear the window */
m_printstr(msg); /* print message in the window */

/* catch events */

m_setevent(ACTIVATE, "A\r"); /* window is now the active window */
m_setevent(COVERED, "C\r"); /* covered by another window */
m_setevent(UNCOVERED,"U\r"); /* completely visible */
m_setevent(REDRAW, "R\r"); /* redraw requested */

m_clearmode(M_ACTIVATE); /* bury the window */

/* wait for an event */

while(m_gets(line) != NULL) /* read a line from MGR */
switch (*line) {
case ’A’: /* window is activated */
clean(); /* clean up and exit */
break;
case ’C’: /* window is covered */
m_clear();
m_printstr("hidden");
alarm(TIME); /* turn on reminder */
break;
case ’R’: /* system ’redraw’ */
case ’U’: /* window is uncovered */
m_clear();
m_printstr(msg);
alarm(0); /* turn off reminder */
break;
case ’T’: /* send reminder */
m_setmode(M_WOB); /* highlight window */
m_bell(); /* ring the bell */
sleep(1);
alarm(TIME); /* reset reminder timer */
m_clearmode(M_WOB); /* reset window highlighting */
break;
}
}

clean() /* clean up and exit */
{
m_ttyreset(); /* reset tty modes */
m_popall(); /* restore window context */
exit(0);
}

timer() /* called at reminder timeout */
{
m_sendme("T\r"); /* send timeout message */
}

Macros and Functions by Category

Macro and Function Index
These are the pages where macros and functions are referenced. The italic page
numbers are the defining references.

7-44 mgr win- MGR - C Language Application Interface
dows

*The routinesmarked with a dagger (|) are functions, the other routines aremacros.
The page number on which the macro or function is defined is printed in bold face
after the name. Unfortunately, I haven’t got round to indexing this document in
this fashion as yet.

 MGR - C Language Application Interface mgr windows 7-45

Index

.mgrc, 1-3

active window, 7-2
alt keys, 2-1
assign, 1-1

child, 7-9
co-ordinates, 7-3
column, 7-9
control characters, 7-10
ctrl S, 2-2

debug, 1-2
default fonts, 2-1
Dheight, 7-9
Dwidth, 7-9

environment, 1-1
escape sequences, 3-1

files, 5-6
files used, 1-3
fonts, 1-1
fonts for mgr, 5-3
from, 7-10
functions, 7-36

get_all(), 7-36
get_client(), 7-36
get_colrow(), 7-36
get_cursor(), 7-36
get_eachclientwin(), 7-37
get_eachwin(), 7-37
get_font(), 7-37
get_mouse(), 7-37
get_param(), 7-37
get_size(), 7-38
get_termcap(), 7-38

height, 7-10
high, 1-2
home, 1-2

icons, 1-1
install hardware, 4-1
is_active(), 7-38

joystick, 1-2

key usage, 5-5

libraries, 1-1
library, 7-40

m_addchar(), 7-11
m_addline(), 7-11
m_aligntext(), 7-11
m_arc(), 7-11
m_bcolor(), 7-11
m_bell(), 7-11
m_bitcopy(), 7-11
m_bitcreate(), 7-12
m_bitdestroy(), 7-12
m_bitfile(), 7-38
m_bitfromfile(), 7-12
m_bitget(), 7-12
m_bitld(), 7-12
m_bitload(), 7-38
m_bitsave(), 7-13
m_bitwrite(), 7-13
m_broadcast(), 7-13
m_circle(), 7-13
m_clear(), 7-14
m_deletechar(), 7-15
m_destroywin(), 7-16
m_down(), 7-16
m_draw(), 7-16
m_dupkey(), 7-16
m_ellipse(), 7-16
m_fastdraw(), 7-16
m_fcolor(), 7-17
m_flush(), 7-17
m_font(), 7-17
m_func(), 7-17
m_getchar(), 7-17
m_gets(), 7-18
m_go(), 7-21
m_gotext(), 7-21
m_halfwin(), 7-21
m_highlight(), 7-22
m_incr(), 7-22
m_lastline(), 7-39
m_left(), 7-22
m_line(), 7-22
m_linecolor(), 7-22
m_lineto(), 7-22
m_linkmenu(), 7-22
m_loadfont(), 7-23
m_loadmenu(), 7-23
m_makewindow(), 7-39
m_move(), 7-23
m_movecursor(), 7-23
m_movemouse(), 7-23
m_moveprint(), 7-24
m_movewindow(), 7-24
m_nomenu(), 7-24
m_othersave(), 7-24

mrg windows i

m_pagemenu(), 7-24
m_pop(), 7-24
m_popall(), 7-24
m_printstr(), 7-25
m_push(), 7-25
m_pushsave(), 7-26
m_put(), 7-27
m_putchar(), 7-27
m_rcircle(), 7-27
m_rellipse(), 7-27
m_resetesc(), 7-27
m_rfastdraw(), 7-27
m_right(), 7-27
m_scrollregion(), 7-27
m_selectmenu(), 7-28
m_selectwin(), 7-28
m_sendme(), 7-28
m_sendto(), 7-28
m_setecho(), 7-29
m_setesc(), 7-29
m_setevent(), 7-29
m_setmode(), 7-32
m_setnoecho(), 7-34
m_setnoraw(), 7-34
m_setraw(), 7-34
m_setup(), 7-39
m_shapewindow(), 7-34
m_size(), 7-34
m_sizeall(), 7-34
m_sleep(), 7-34
m_snarf(), 7-34
m_standend(), 7-35
m_standout(), 7-35
m_stringto(), 7-35
m_textregion(), 7-35
m_textreset(), 7-35
m_ttyreset(), 7-39
m_ttyset(), 7-40
m_unlinkmenu(), 7-35
m_unpagemenu(), 7-35
m_up(), 7-35
m_whatsat(), 7-35
m_windowsave(), 7-36
macros, 7-10
max_x, 1-1
max_y, 1-1
menu_load(), 7-38
mgetinfo(), 7-18
mgrcleanup, 1-2
mgrscreeninit, 1-2
microsoftmouse, 1-2
mode, 7-9
mouse, 1-2
mouse usage, 5-4
mousexscale, 1-2

n, 7-9
name, 7-9
nonlinear mouse, 1-2

parent, 7-9
pc systems mouse, 1-2
pseudo terminals, 7-1

radius, 7-9
row, 7-9

setenv, 1-2
startup file, 2-1
stop output, 2-2
string, 7-9

termcap entries, 7-4
terminal emulations, 3-1
to, 7-10

wide, 1-2
width, 7-10

x,y, 7-10
X,Y, 7-10

mrg windows ii

Table of Contents

1 Bringing up MGR .. 1-1
ROM version ... 1-1
ASSIGNments ... 1-1
Environment .. 1-1
Files .. 1-3

2 Invoking mgr .. 2-1
Running under mgr .. 2-1

3 Writing mgr applications .. 3-1

4 Installation of mgr .. 4-1
Installation ... 4-1
Fixing horizontal sync .. 4-1
Inverting vertical sync .. 4-2
Programming .. 4-3

5 mgr - manage windows on a SUN Workstation 5-1
Synopsis ... 5-1
Description .. 5-1
Using The Mouse .. 5-4
Using The Left and Right Keys ... 5-5

Files ... 5-6
See also ... 5-6
Diagnostics ... 5-6
Bugs .. 5-7
Author .. 5-7

6 Programs Available ... 6-1
Bitmap - Bitmap header format for mgr bitmaps. .. 6-1

Synopsis .. 6-1
Description .. 6-1
Bugs .. 6-2
See also ... 6-2

bounce - A standard graphics demo ... 6-3
Synopsis .. 6-3
Description .. 6-3
See also ... 6-3
Author ... 6-3

browse - An icon browser for MGR .. 6-3
Synopsis .. 6-3
Description .. 6-3
Bugs .. 6-3
See also ... 6-3
Author ... 6-3

bury - Bury a mgr window. .. 6-4
Synopsis .. 6-4
Description .. 6-4
See also ... 6-4
Author ... 6-4

c_menu - Turn C error messages into vi menus. ... 6-4
Synopsis .. 6-4

mgr windows i

Description .. 6-4
See also ... 6-4
Bugs .. 6-4
Author ... 6-4

clock - Digital display of time of day on a mgr terminal. 6-5
Synopsis .. 6-5
Description .. 6-5
See also ... 6-5
Author ... 6-5

clock2 - Analog display of time of day on a mgr terminal. 6-5
Synopsis .. 6-5
Description .. 6-5
See also ... 6-5
Author ... 6-5

close - Close a mgr window. ... 6-6
Synopsis .. 6-6
Description .. 6-6
Examples ... 6-6
Bugs .. 6-6
See also ... 6-6
Authors .. 6-6

color - set the forground and background color for text in an Mgr window.
... 6-7

Synopsis .. 6-7
Description .. 6-7
See also ... 6-7
Bugs .. 6-7
Author ... 6-7

cut - cut text from a MGR window and send it to a program. 6-7
Synopsis .. 6-7
Description .. 6-7
See also ... 6-7
Author ... 6-7

cycle - Display a sequence of icons on an mgr terminal. 6-8
Synopsis .. 6-8
Description .. 6-8
See also ... 6-8
Author ... 6-8

dmgr - A rudimentary troff previewer for mgr ... 6-8
Synopsis .. 6-8
Description .. 6-8
Bugs .. 6-8
See also ... 6-8
Author ... 6-8

ether - Display a strip chart of network traffic. ... 6-9
Synopsis .. 6-9
Description .. 6-9
See also ... 6-9
Diagnostics .. 6-9
Bugs .. 6-9
Author ... 6-9

font - font file format for mgr bitmaps. .. 6-10
Synopsis .. 6-10
Description .. 6-10
Bugs .. 6-10
See also ... 6-10

mgr windows ii

iconmail - Notification of mail arrival .. 6-11
Synopsis .. 6-11
Description .. 6-11
Bugs .. 6-11
Files ... 6-11
See also ... 6-11
Author ... 6-11

iconmsgs - message arrival notification .. 6-12
Synopsis .. 6-12
Description .. 6-12
Bugs .. 6-12
Files ... 6-12
See also ... 6-12
Author ... 6-12

invert_colormap - inverts the colormap on a SUN color display MGR 6-13
Synopsis .. 6-13
Description .. 6-13
See also ... 6-13
Author ... 6-13

lock - lock the sun console .. 6-13
Synopsis .. 6-13
Description .. 6-13
Files ... 6-13
See also ... 6-13
Bugs .. 6-13
Author ... 6-13

maze - A graphical game of solitare .. 6-14
Synopsis .. 6-14
Description .. 6-14
Bugs .. 6-14
See also ... 6-14
Acknowledgments ... 6-14

menu - create or select an mgr pop-up menu ... 6-15
Synopsis .. 6-15
Description .. 6-15
Options .. 6-15
Examples ... 6-15
Author ... 6-16

mgrmail - Notification of mail arrival .. 6-17
Synopsis .. 6-17
Description .. 6-17
Bugs .. 6-17
Files ... 6-17
See also ... 6-17
Author ... 6-17

mgrmsgs - message arrival notification .. 6-18
Synopsis .. 6-18
Description .. 6-18
Files ... 6-18
See also ... 6-18
Author ... 6-18

oclose - Close a mgr window. ... 6-19
Synopsis .. 6-19
Description .. 6-19
Bugs .. 6-19
See also ... 6-19

mgr windows iii

Author ... 6-19
omgrmail - Notification of mail arrival .. 6-20

Synopsis .. 6-20
Description .. 6-20
Bugs .. 6-20
Files ... 6-20
See also ... 6-20
Author ... 6-20

overlay - Enable or disable the overlay plane on a Sun 110. MGR 6-21
Synopsis .. 6-21
Description .. 6-21
See also ... 6-21
Author ... 6-21

rotate - Rotate a bitmap 90 degrees. ... 6-21
Synopsis .. 6-21
Description .. 6-21
Bugs .. 6-21
See also ... 6-21
Author ... 6-21

set_colormap - initialize colormap entries suitable for MGR. 6-22
Synopsis .. 6-22
Description .. 6-22
See also ... 6-22
Bugs .. 6-22
Author ... 6-22

set_console - redirect console messages to a MGR window. 6-23
Synopsis .. 6-23
Description .. 6-23
See also ... 6-23
Bugs .. 6-23
Author ... 6-23

set_termcap, set_emacs - set an appropriate TERMCAP entry for MGR. 6-24
Synopsis .. 6-24
Description .. 6-24
Bugs .. 6-24
See also ... 6-24
Author ... 6-24

shape - Reshape mgr window. ... 6-24
Synopsis .. 6-24
Description .. 6-24
Bugs .. 6-24
See also ... 6-24
Author ... 6-24

show - displays a bit-mapped image on a mgr window. 6-25
Synopsis .. 6-25
Description .. 6-25
Bugs .. 6-25
See also ... 6-25

snap - capture a portion of the display as a bitmap image 6-26
Synopsis .. 6-26
Description .. 6-26
Files ... 6-26
See also ... 6-26
Diagnostics .. 6-26
Bugs .. 6-27
Author ... 6-27

mgr windows iv

startup - produce a startup file reflecting the current mgr screen layout. 6-28
Synopsis .. 6-28
Description .. 6-28
Bugs .. 6-28
See also ... 6-28

stat - Display a strip chart of one or more current machine statistics. 6-28
Synopsis .. 6-28
Description .. 6-28
See also ... 6-29
Diagnostics .. 6-29
Bugs .. 6-29

stringart - A standard graphics demo ... 6-30
Synopsis .. 6-30
Description .. 6-30
See also ... 6-30

tjfilter - Bitmap lpr filter for the HP ThinkJet printer. 6-30
Synopsis .. 6-30
Description .. 6-30
Bugs .. 6-30
See also ... 6-30

window_print - print an image of an MGR window on a printer. 6-31
Synopsis .. 6-31
Description .. 6-31
Files ... 6-31
See also ... 6-31
Diagnostics .. 6-31
Bugs .. 6-31

zoom - an icon editor for mgr .. 6-32
Synopsis .. 6-32
Description .. 6-32
Bugs .. 6-34
See also ... 6-34

7 MGR - C Language Application Interface .. 7-1
Introduction .. 7-1
Model of Interaction ... 7-2
Coordinate Systems .. 7-3
Functional Overview .. 7-3

Terminal Emulation .. 7-3
Graphics .. 7-4
Bit-blts ... 7-5
Window Positioning .. 7-5
Font Changes .. 7-5
State Inquiry .. 7-5
Saved Contexts .. 7-5
Menus .. 7-6
Events .. 7-6
Sweep Functions ... 7-6
Multiple Window Manipulation .. 7-6
Cut and Paste .. 7-7
Messages .. 7-7
Window Modes .. 7-7

Underlying Protocol .. 7-7
Conventions and Notation .. 7-9
Macros ... 7-10

mgr windows v

Functions ... 7-36
Using the Library .. 7-40
Glossary ... 7-41
Sample Client Program .. 7-43
Macros and Functions by Category .. 7-44
Macro and Function Index .. 7-44

mgr windows vi

