M68000 Assembler
SSASM Users Manual

Version 1.032
August, 1993

Applix 1616 microcomputer project
Applix pty Itd

SSASM Users Manual
M68000 Assembler

Applix 1616 project

Even though Applix has tested the software and reviewed the documentation, Applix makes no
warranty or representation, either express or implied, with respect to software, its quality,
performance, merchantability, or fitness for a particular purpose. As a result this software is
sold "asis," and you the purchaser are assuming the entire risk as to its quality and performance.

Inno eventwill Applix be liable for direct, indirect, special, incidental, or consequential damages
resulting from any defect in the software or its documentation.

The original version of this manual was written by Andrew Morton, based on David Farb’s
68000 assembler.

Additional introductory and tutorial material by Eric Lindsay

Editorial and design consultant: Jean Hollis Weber

Comments about this manual or the software it describes should be sent to:

Applix Pty Limited
Lot 1, Kent Street,
Yerrinbool, 2575
N.S.W. Australia
(048) 839 372

Private BBS systems (ringback) on (02) 554 3114 and (02) 540 3595

[0 Copyright 1983 by David Farb, farbware. All Rights Reserved.
[0 Copyright 1986 Applix Pty Limited. All Rights Reserved.
Revised materidll Copyright 1990 Eric Lindsay

ISBN 0947341 7?7 ?

MC6800Q1 is a trademark of Motorola Inc.

1
Introduction

SSAsSMs an assembler for the Motorola 68000 series of 16/32 bit microprocessors. It accepts
a file containing standard Motorola assembler mnemonics and directly produces executable
transient programs. That s, it produces:c files for the Applix 1616.

SSAsSMexecutes as either a built-incommand, oras anormaltransient program, underthe 1616/0S
operating system on an Applix 1616 computer system. Versions of 1616/0S later than 3.2b
havessAsMversion 2.2, built into the operating system eproms. This is often very convenient,
because you can edit and assemble programs without using a disk drive, if you wish.

SSAsMsupports all the instructions of the 68000 microprocessor, but does not support (at this
time) the special instructions for the 68010 and 68020. These opcodes may be implemented as
macro instructions. In additiolsSASMsupports a variety of listing and pagination controls of

use when examining the list file, data declaration statements for initialising constants, file
inclusion and conditional assembly controls.

Two of the more interesting featuressfAsvare

. structured programming constructs (which don’t quite work)
. macro processing capability (which do work)

The structured programming constructs should include

. IF/ THEN/ELSE

. FOR/ENDF

. WHILE/DO/ENDW

. REPEAT/UNTIL

all of which would be very pleasant, if they worked correctly under all circumstances. However
you can easily get along without them, so don’t pay much attention to the chapter on how they
should work.

Macro processing permits conditional assembly inside macros, parameters to macros, automatic
generation of unique labels and other features, all detailed in the chapter on macros. Very handy
stuff, and essential once you get more familiar with the assembiler.

1.1 References

The principle reference for the instructions on the 68000 is published by Prentice-Hall, Inc. of
Englewood Cliffs NJ, 07632, titleel68000 16/32 Bit Microprocessor Programmer’s Reference
Manual written by the staff of Motorola. Prentice-Hall, about 200 pages. This lists all the
68000 instructions, and is an essential reference tool, but will not tell you how to use the
instructions, nor how to program in assembler. The current version is the fifth edition, and we
recommend not bothering with the first, second or third editions.

Thessasvmanual does not duplicate the content of Reference Manuabut should be used
in conjunction with it. TheReference Manuas available from Applix, and is recommended.

Other references which you may find helpful are the following:

Introduction SSASM Assembler 1-1

The 68000: Principles and Programminlgy Leo J. Scanlon, published by Howard W. Sams,
238 pages. The 1981 edition is now somewhat dated, but still includes much excellent intro-
ductory material (and | picked it up cheap). Like most other assembler manuals, it assumes you
are familiar with the concept of assembler language, and merely want to add yet another version
to your repertoire. This is historically naive, since everyone has to start somewhere.

68000 Microprocessor Handbophky Gerry Kane, published by Wayne Green Books.

68000 Assembler Language Programmibg Gerry Kane, published by Wayne Green Books.
| am not certain that Wayne Green Books are still available in Australia. A possible alternative,
by the same author, is below.

68000 Assembly Language ProgrammirygGerry Kane, Doug Hawkins and Lance Leventhal,
published by Osborne McGraw-Hill, about 300 pages covering concepts, simple problems at
about the level of the Scanlon book, including over 50 program examples. Advanced topics
cover parameter passing, subroutines, 1/0 and interrupts, and there is a useful major coverage
of problem definition, program design, documentation, debugging and testing and so on. There
are also about 150 pages of appendix on the instruction set, a summary, and object code formats.

680x0 Programming by Examplg/ Stan Kelly-Bootle, published by Howard W. Sams, 482
pages. Thisoneisagood introduction for those who have done minor workin anotherassembler.
It contains brief, but very clear, summaries of 680x0 differences, addressing modes, and
instructions, and then goes on to a number of commented code examples. The major example
is a 68000 version of the Kermit file transfer protocol, which is a fairly involved piece of work.
The beginner would be better served by the same autb8080, 68010, 68020 Primd¢but

since | don’t have a copy, | can’'t review it).

68000 Assembly Language Techniques for Building Progrém®onald Krantz and James
Stanley, published by Addison-Wesley, 400 pages. After a brief overview of the 68000
instruction set (which contains some interesting viewpoints), this gets down to the main contents,
namely implementing a text editor in 68000 assembler. Lots of commented code, with expla-
nations of why things were done certain ways. While this is fine for the more experienced
assembler language programmer, the beginner may have problems coming to grips with such a
large project.

1.2 File Naming Conventions

SsAsmuses the following file naming conventions

filename.s source file (must include).

filename.exec executable code.

filename.Ist listing output.

filename.xrel relocatable code.
Although the source file must havesa extension, you should not type thlse when invoking
the assembler, or theakexrel.shell program for makingxrel files.

ssAsmwill automatically supply theexec extension when it produces the final executable file,
by removing thes extension, and substituting theec extension. If you use the command
line switch, you will override this automatiexec naming feature.

To produce standard Applix 1616 relocatable programs.fthe files), you actually run the
assembler twice, by using thekexrel.shell shell program that is explained later. This step

is usually only done when you have a complete working program, with all the bugs and problems
removed.

1-2 SSASM Assembler Introduction

The listing file produced by the switch is an ASCII text file produced by the assembler. It
includes the text of yous source file, plus the expansion of any macros or include files, so
you can see what was actually in them. It also contains a hexadecimal representation of the
actual Motorola 68000 object code produced, and the location in memory they occupy. This
lets you see the actual code produced by the assembler. The listing switches or options such as
-f -h -t let you alter the page length and appearance of the listing, to more easily suit it to
your printer or output device.

1.3 Invoking the Assembler

SSASMs acommand executed under 1616/0S. You invoke it by typing the name of the command,
followed by any switches (or parameters). For example

SSASM testcode
will assemble a file calleeéstcode.s from the current directory.

The file testcode.s is a simple ASCII text file, usually produced using tbgit inbuilt
command. It contains lines of text, each usually a single Motorola 68000 command. The details
of this are discussed in section 2.

Switches are specified by a leading dashmmediately followed by a letter (upper or lower
case), sometimes followed by a file name or other parameters. There must be at least one blank
between the switch and the file name, but no blanks between the switch and parameters (see
below).

The general form to invokesasMwhere [] enclose optional switches) is
ssasm sourcefile [-finprv] [-h pagelen] [-0 obffile] [-t tabs]
The complete list of switches you may specify is
-f use form feed between pages of the listing output.
-h[nn] set listing page length tonlines in total.

- produces listing output, to standard output. Thef and-t options
vary the format of the listing file.

-n no output of an executable file. Assemble only. Use to test your syntax,
and so on.

-o [filename] specifies the object filename for output. The default output file’'s name
now ends withexec . The-o option overrides this. If neo option is
specified, the object file’s name is that of the source file, with.the
extension stripped off andxec added.

-p

-r not working yet. Should produce an output ready for linking to a relo-
catable form directly, without needing to usekexrel.shell

-t[nn] set tab stops evemyn columns

-v verbose mode, prints sign on message, version number and status infor-

mation as assembly proceeds.

Switches may be specified in any order, but file names must immediately follow their respective
switches. Switches and file names may be entered in any combination of upper and lower case.
All file names are translated to upper case for use by 1616/0S.

A sample command such as

ssasm testcode -o objout -I

Introduction SSASM Assembler 1-3

reads the source code fromstcode.s , writes the object code tobjout (note there is no
.exec extension) and displays a listing file on the screen. The listing file may be redirected to
a file or a character device by using the 1616/®©%edirection command. The listing file
extension should bést

If the -0 switch is not specified, like this
ssasm testcode.s -l > sa:

SSAsMmeads the source code framstcode.s , writes the object code testcode.exec and
sends the listing file to serial port A.

If the source program that you are assembling contains more symbols than will fitin the memory
of your computerssasmwill automatically overflow the symbol table to disk. Provided there
is sufficient space on your disk drivessAsmwill assemble any size source module.

The-f switch causesSASMo use a form feed between pages in the listing file, while-the
switch sets the number of lines per page. The default number of linesis 66. To use form feeds
and set the number of lines to 80, the command might be

ssasm testcode -f -h80

Normally ssasmsimply copies horizontal tab characters in the source file to the listing file. The
-t switch allows you to set tab stops at intervals in the listing fdisasmwill fill in with blanks
to the next tab stop whenever a tab character is found in the input file. The command

ssasm testcode -t10

will set a tab stop every 10 columns in the listing.

1.4 Makexrel

Once a source file is producing workingkec files that produce the results you want, you
should produce a final version of your executable code. The 1616 normally uses relocatable
code. This means the code can be placed by 1616/0S anywhere in memory that contains
sufficient space. This is an obvious advantage if you wish to run more than one program at once
(with the .exec files, only one can fit in any specific set of memory locations).

The makexrel.shell is an easy way to produce ael version, since it simply assembles
your existing source code twice, at different locations in memory. Itthenlocates the differences,
and uses these to produce the desixedl version. Finally, it cleans up various temporary
files after itself. Invoke it simply as

makexrel testfile

The.makexrel.shell is fairly simple, as you will see if yotype it to your display. However
it does depend upon another progragepreloc.xrel , being available in either the same
directory, or in your normal xpath.

If you have the multitasking 1616/0OS Version 4, you may find you have insufficient memory
allocated to stack space to rgenreloc.xrel correctly, the first time you attempt this. You
correct this by using thehmem.xrel program supplied on your Version 4 user disk. Ttiusem

16 genreloc.xrel makes the default stack space denreloc.xrel 16 kbytes. Don't forget

to make surehmemcan findgenreloc.xrel by making sure they are in the same directory, or
in the xpath. This operation should only need to be done once.

1.5 Setting up your disk

Correct operation of the assembler depends upon it being able to find all the files it requires.
When you are doing simple programs, this can be very easy. For example, if you put on the
root directory of your disknakexrel.shell ~ , genreloc.xrel , chmem.xrel , and any macro

1-4 SSASM Assembler Introduction

files you have, such agscalls.mac andtraps.mac , then you can also put your source files

in the same directory. If a source file has a@mglude files, you merely have to state their
name, and they will be found in the same directory as everything else. However, there are
serious problems with this, in the long run.

The major problem is keeping track of where things should be, once you have written a number
of programs. Most people use sub directories to group files of similar nature. If you have to
assemble everything in the root (or any other specific directory), you also have to shuffle files
inand out of it, as you fill it up. Itis better to make some consistent location for the files needed
by the assembler, and use tlpath andassign commands to keep everything working.

For example, make two directories, one calbéd, and the otheinclude . In yourautoex-

ec.shell startup file, have the commangsath /rd/bin /f0/bin andassign /include

/f0finclude (and if you have a second disk drive, or a hard disk, add these also). Place all the
executable programs you will normally neediimn . This meansnakexrel.shell , genre-

loc.xrel , chmem.xrel , and so on. Place all your normal include source files, suclysas
calls.mac andtraps.mac inthe/include directory. When writing your assembler programs,
andusingthenclude directive, you cantype it asclude /include/traps.mac , forexample.

If you do this consistently, it becomes very easy to change where the include source files actually
reside, just by changing thasign , without changing any of your source files.

1.6 Error messages

If ssasMiinds any errors (heaven forbid!) in your program, or fails to understand your intent
(more likely) it produces a message on the console giving the line number of the source statement
in the input file, and a reasonably detailed error message.

In addition,SsAsMinserts a line in the listing file after the source statement giving the error
message again. No more than two errors are ever reported on a single line.

SSASMreturns an error code to 1616/0S if an assembly error occurs, so that shell files may
terminate (if tharap command has been given).

Some errors are not associated with a source line number, such as a missing source file name,
or insufficient space on the disk for another file. These messages appear only on the video
display.

Appendix A contains acomplete listing of all the error messages (and the error numbers produced
by earlier versions ofsAsM and a description of their likely cause.

Introduction SSASM Assembler 1-5

2
Coding Conventions

This chapter provides the basic information on coding and formasisagnmsource files. You
may use the inbuilt 1616/0S editeuit , to create these files. Source files are standard ASCII
character files, with no special command codes.

Source statements may be coded in upper or lower casgeshatwill convert all input (except
literals and comments) to upper case before processing. This means that "label0" and "LabeL0"
will be treated as the same symbol&yAsM Any character entered by an editor is acceptable

in comments and literals, but only alphabetic (A thru Z and a thru z), numeric (0 thru 9), and
the special characters

+-<>,. /()&% $#and!

may be used in the remainder of your program. See the sections below for more detailed dis-
cussions.

Source files are divided into lines, terminated by a carriage return-line feed combination. Each
line is either a

. comment

. machine instruction

. assembler directive

. structured assembler operation
. conditional assembler operation
. macro definition.

2.1 Comments

Comment lines are ignored I3sAsM, and may be freely used to document your program.
Comment lines have an asterisk''In column 1, and any text you desire in the remainder of
the line. The lines

*

* Main entry point.
*

are all comments and will be ignored BgASM
Comments can also be provided by using the semicolbdto'indicate the start of the comment.

2.2 Instruction Formats

Most instructions can be divided into four fields.
label operation operands comments

The assembler determines which is which by their position within each line of the source file.
Anything that starts in the first column of a line is a label. The space or tab character is used to
indicate where the label field ends. The next item is the operation, and again the space or tab
character indicates where this field ends, and so on for operands and comments. You can have
as many space or tab characters as you like. Multiple spaces are treated the same as a single
space for the purposes of indicating where a field ends. However, you must never put a space
or tab where there should not be one, as you will totally confuse the assembler.

Coding Conventions SSASM Assembler 2-1

The label provides a name for the instruction and is usually optional. If there is no label, a space
or tab is placed at the start of the line, and the next item in the line is treated as an operation.

The operation field determines the machine, macro, conditional assembly, or other operation to
be performed. The operation field must be followed by one or more blanks or tab characters.

Operands are usually required (depending on the operation) and provide the operation with data.
No blanks are permitted in the operand fields, except in structured operations.

The comment field is always optional and must be separated from the operands by at least one
blank or atab character. Note that the comment field does not need to be preceded by an asterisk
or semicolon, however the source file will probably be more understandable if one is used.

The end of the line is indicated by a carriage return-line feed combination.

ssAsmpermits null lines (lines having no label operation or other fields) or lines which have
only a label and none of the other fields. However, if there is a label, and you do not wish to
have an operation on that line, the comments portion must also be omitted, since the assembler
will attempt to interpret the comments as an operation.

Blanks or horizontal tab characters are used to separate the label, operation, operands and
comment fields. If the label is terminated by a colon ":", no blank is required after the colon.

Labels of the form

START
MOVE.L D0-D7/A0-A7,-(SP)

are permitted, in fact encouraged. Having the label on a line separate from all other information
is quite handy should you have to insert a new instruction between the label and the instruction.

In the instruction
LABELONE MOVE.L DO,D3 SET RESULT

LABELONES the label fieldMOVE.Lis the operationpo,D3 are the operands, als¢T RESULT
IS a comment.

2.3 Labels

Labels are at least one character long, must begin with an alphabetic character (A thru Z) or a
period " and may contain alphabetic and numeric characters and periods ".". Only the first 8
characters are significant. Labels may begin in column 1 and/or may be followed by a colon
":". If the label is followed by a colon, it need not begin in column 1 of the line. The colon is

not part of the label.

The colon allows structured programming with indented lines of code and labels. Allowing the
label to be indented requires that the label have some special character which denotes a label;
otherwise it would be confused with the operation field.

STARTandLOOPAGHNre labels

START SUBQ.L #3,D3
LOOPAGN: CHK (A2)+,D3

2.4 Operation Field

The operation field gives the name of the assembler operation which is being performed. Itis
always composed of alphabetic characters, but only the first five are used. The basic operation
code is followed (usually) by a period and an operation qualifier.

In the instruction

BTST.B D6,0FFSET(A3)

2-2 SSASM Assembler Coding Conventions

BTSTIs the operation code, argis the qualifier. Normal qualifiers are

B - byte
W - word (2 bytes)
L - long (2 words, 4 bytes)

and

S - short (for branching).
L - Long (for branching).

but others may be used.

Qualifiers usually specify the length of the data that an operation will use; for branch instructions
they determine the length of the displacement (one byte or two).

2.5 Operands

Operands are required for most operationssasm Quite frequently there are two operands,
which are separated by acomma. No blanks are permitted inthe operand portion of an instruction,
except the structured programming operations.

For 68000 machine operations there are many formats of operands, and these are covered in
Chapter 3. Each assembler directive also has a particular format for operands which is covered
in Chapter 4.

2.6 Comments

Comments may be placed after the operand field of a machine, data definition, conditional
assembly, assembler directive, structured operation, or macro invocation. Comments of this
form must be preceded by at least one blank or tab. The instruction

ADD.L DO0,DO Multiply value by 2
has the commemultiply value by 2 after it.

It is suggested that you put an asterisk "*" or semicolon ";" in front of comments such as these
for both readability and compatability with other assemblers.

2.7 Expressions

Expressions allow you to compute arithmetic results in your source code during assesmsiyt.
supports a comprehensive set of operations in expressions.

The operations are

. addition +

. subtraction -

. multiplication *

. division / (truncating)

. shift left <<

. shift right >>

. logical and &

. logical or !

. parenthesis (and) for order of evaluation.

Addition and subtraction are performed as

[expressionl} [expression2]
[expressionl} [expression2]

Coding Conventions SSASM Assembler 2-3

Multiplication and division are performed as

[multiplier] * [multiplicand]
[dividend]/ [divisor]

The divisor must not be zero. The result of the division is a truncated integer, thus 1/2 is 0.
Shifting is performed by

[expressionk< [shift count]
[expressionp> [shift count]

In the first line, the expression is shifted LEF<) the number of bits specified by the shift
count (an expression). In the second line the expression is shifted RISHThe number of
bits specified in the shift count.

The logical operations of AND and OR (inclusive) are performed by

[expression 1k [expression 2]
[expression 1] [expression 2]

In the first line, the bits of expression 1 are logically ANDed with the bits of expresssion 2. In
the second line, the bits of expression 1 are logically inclusive ORed with the bits of expression
2.

The order of evaluation is logical operations first, then shifts, then multiplication and division,
then addition and subtraction. Parenthesis can be used to modify the order of evaluation of
operations.

A*(B+C)

means add the value of B to the value of C, and multiply the result by the value of A, while
A*B+C

means multiply the value of A times the value of B and add the value of C.

In _addition to I_abels, constants of s_everal _forms can be used. A constantis either a numeric or
a literal (a series of characters) which defines a unique value.

Numeric constants can be entered in four forms, decimal, binary, octal and hexadecimal. The
formats are given by

@01234567 - Octal, preceded by "@", followed by one or more octal digits (0-7).

%01 - Binary, preceded by "%", followed by one or more binary digits (0 and
1).

$0123456789ABCDEF - Hexadecimal, preceded by "$", followed by one or more
hexadecimal digits (0-9, A-F).

0123456789 - Decimal, a string of decimal digits.

Literals are strings of characters enclosed in apostrophes (*), or double quotes (), which are
used as operands in instructions.

'A-Z, etc, - ASCII string, one or more characters, enclosed in apostrophes ’. Use
two apostrophes in a row to represent one, " represents a single apos-
trophe.

for example
CMPI #A’,D0 Check for 'A’.

2-4 SSASM Assembler Coding Conventions

2.8 Location Counter
The current location counter in the assembly can be used in expressions by using the special
character*". "*" represents an absolute value which is the value of the location counter.
BRA.S * Loop forever.
or
LENGTH EQU *START Compute length of data.

2.9 Special Names

SSASMreserves certain names for internal 68000 registers and other uses. The most common
are the data and address registers, named DO thru D7, and AO thru A7. A7 may also be referred
to as SP for stack pointer.

Other special names, used only in certain instructions, are USP for the User Stack Pointer, CCR
for the Condition Code Register, SR for the Status Register, and PC for the Program Counter.

You should not define labels with these names since they are resergsabsyfor these CPU
registers. In addition, avoid the names VBR for Vector Base Register, SFC for Source Function
Code, and DFC for Destination Function Code. These names will be used for the 68010 and
68020.

The name NARG is reserved for macro processing. It defines the number of arguments to the
current macro expansion. See Chapter 6.

2.10 Code Generation

The 68000 has a wide variety of instructions that can accomplish the same operation, but some
may be more efficient than others. Where posségasmwill chose the shortest form of an
instruction.

It is always possible to explicitly override the choices thaasmMmakes by coding the proper
form of the instruction. Usually this means putting the proper qualifier on the operation code.

SsASMwill assemble
BRA BACK

in 2 bytes if the label BACK is previously defined, and can be reached with a displacement from
the PC between 0 and -128. Otherwise it will assemble 4 bytes for the instruction.

BRA.L BACK
will always be assembled in 4 bytes, and
BRA.S BACK

will always be assembled in 2 bytes (which may cause an error if the displacement from the PC
is less than -128 or greater than 127).

Coding Conventions SSASM Assembler 2-5

3
Operand Formats

This chapter explains the formats allowed on all machine instruction operands. The 68000 has
a wide variety of operand addressing modes.

Operands may be located in a data or address register, or they may be indirectly refered to by
an address register. The contents of an address register, used for indirect references, may be
automatically incremented or decremented. Other modes are available. Each of these modes
requires differing operand formats which are explained below.

3.1 Source and Destination Fields

The instruction format of the 68000 was designed for regularity, and most 68000 instructions
have two operands. The first operand is always considered the source operand, and the second
is always considered the destination operand. Data movement is always from left to right.

In an ADD instruction
ADD.L #400,D5

the immediate value 400 (decimal) is added to the contents of data register 5 and the result stored
back in data register 5.

The MOVE instruction

MOVE.L FROMDATA(A3), TODATA(AB)
moves one long word frorAROMDATAlisplaced from A3 taODATAdisplaced from A6.
The CMP (compare) instruction

CMP.L #400,D3

subtracts the immediate value 400 from the contents of D3 (just as the SUB instruction), sets
the condition codes, but does not store the result in D3. D3 is left unchanged.

CMP instructions are usually followed immediately by Bcc instructions, of which there are about
15 possible condition codes.

CMP.L #32,D4 COMPUTE D4 - 32
BLT.S D4LT32 BRANCH IF D4 < 32

Unfortunately this is backwards from the way people usually think, and it may take some getting
used to.

3.2 Data Register Direct
The simplest operand format is the data register, which is specified by one of the names DO thru
D7. Some examples of its use are

ADDQ.L #3,D0
CLR.L D5

In the ADDQ (add quick) instruction, DO refers to data register 0, D5 in the CLR (clear)
instruction refers to data register 5.

References to data registers are of the form Dn, where n is a digit between 0 and 7.

Operand Formats SSASM Assembler 3-1

3.3 Address Register Direct

Address registers, when the data they contain is to be manipulated, are simply refered to by their
names of AO thru A7. A7 may also be referred to as SP (Stack Pointer). Remember that A7 is
a double register, depending upon whether the 68000 is in User or Supervisor mode. SP may
be referred to as USP or SSP.

LEA.L FIELD1(A3),A4
MOVE.L A3,USP
MOVEA.W LABEL2,A6

The LEA instruction loads the effective addressFtLD1(A3) into address register 4 (A4).
The MOVE instruction moves the contents of address register 3 (A3) to the user stack pointer
(USP).

3.4 Address Register Indirect

To use the contents of an address register as a pointer to the data for the instruction, use the
name of the register enclosed in parenthesis.

ADD.L (A5),D5
MOVE.L D3,(A0)

The ADD instruction finds the long word (.L) which is located at the address CONTAINED in
address register 5 ((A5)) and adds it to the contents of data register 5 (D5). The MOVE
instruction places the entire contents of data register 3 (D3) in the location CONTAINED in
address register 0 ((AO)).

3.5 Address Register Indirect with Postincrement

This form of addressing uses the contents of an address register as a pointer to the data for the
instruction. Once the data has been accessed, the contents of the address register are incremented
by an appropriate length.

The length is determined by the qualifier on the operation: if the qualifier is byte (.B), the
increment is 1, if the qualifier is word (.W) the increment is 2, and if the qualifier is long (.L)
the increment is 4.

To specify this form of addressing, enclose the address register in parenthesis, and follow it
immediately with a plus sign

CMP.B (A3)+,D0
CLR.L (AT)+

The CMP instruction will subtract the contents of the byte pointed to by A3 from DO, set the
condition codes accordingly and increment A3 by 1.

The CLR instruction will increment the contents of A7 by four after setting the long word at
that address to zero.

3.6 Address Register Indirect With Predecrement

This form of indirect addressing decrements the contents of the address register BEFORE it is
used to access the data. It is specified by enclosing the register name in parenthesis, and
immediately PRECEDING it with a dash

MOVEM.L DO-D3/D6/D7,A0-A5,-(SP)
SBCD.B -(A3),-(A5)

3-2 SSASM Assembler Operand Formats

The MOVEM will store the contents of the indicated registers at the address pointed to by the
current stack pointer (SP, the same as A7) -4, -8, -12, and so on.

Note again that the address register is decremented BEFORE it is used as an address.

The value of the decrement is determined by the length code of the instruction. L will decrement
by 4, W by 2 and B by 1.

3.7 Address Register Indirect with Displacement

This form of addressing allows you to use an address register as a pointer to a group of data and
reference data within the group using ABSOLUTE displacements. One method of coding this
mode (not recommended) is

SUBQ.L #3,12(A4)

If you change the data structure that A4 is pointing to, you will have to change all the absolute
numbers used to reference that data structure. You may miss a few. A better way uses labels
to define offsets into the data area

DATA
FIELDO DS.L 2
FIELD1 DS.L 4
and
SUBQ.L #3,FIELD1-DATA(A4)

This way, to change the data structure, simply change the label definitions and reassemble the
program;ssAasmwill compute the proper value for FIELD1 and use it in the instruction.

For this mode of the instruction the displacement is coded as an expression which yields an
ABSOLUTE result. Any valid expression can be used,

TAS.B FIELD22+16*4(A3)

It is usually better to assign a symbolic name to every data field than to use absolute numeric
expressions because of problems associated with changing the data structure.

3.8 Address Register Indirect with Index

This mode adds the contents of an address register to an index register using either long or word
arithmetic, and then adds a displacement (sign extended) to the result. It is specified using the
following format

ADD.W DISPLACE(A3,D2),D0
ADD.W DISPLACE(A3,D2.W),D3
ADD.W DISPLACE(A3,D2.L),D3

In the first ADD instruction the contents of A3 are added to the contents of D2 (D2 is sign
extended from a word to a long word), the value of DISPLACE (a single byte, sign extended)
is then added to the result.

The second ADD instruction is identical to the first except the word extension of D2 is coded
explicitly (D2.W).

The third ADD instruction specifies that all of register D2 is to be added to register A3, then
the sign extended byte is added to the result.

Note that the displacement is a single byte, and must have a value between -128 and +127.

Operand Formats SSASM Assembler 3-3

3.9 Absolute Short Addressing

This form of addressing uses a two byte, absolute address, to refer to the data. This permits you
to access either the first 32K, or the last 32K of memory (address’ $000000 thru $007FFF and
$FF8000 thru $FFFFFF). This mode is obtained by coding an ABSOLUTE expression as the
operand.

JMP $400
SUBONE EQU $1202

JSR SUBONE
DEVONE EQU $200

BSET.B #4,DEVONE

If the value of the expression is defined at the time the instruction is assembled (ie. itis a
backward referenceysasmwill choose the short mode for the reference.

If the value of the reference is NOT defined at the time the instruction is assembled (ie. itis a
forward or external reference9sAasmvill choose the long mode (next section) for the reference.

However you can force all forward references to be short form by using the OPT FRS instruction
(see Chapter 4).

3.10 Absolute Long
ssAsmwill use the PC relative form of addressing in some cases, if the expression is a backward
reference.

The form for requesting the long form is the same as the short form above.

MOVE.L DO,DATASTOR
DATASTOR DS.L 1

3.11 Program Counter with Displacement

This form of addressing uses the present location in the Program Counter register (which is
usually pointing to the byte AFTER the firsttwo bytes of the instruction) and adds a displacement
to it. The displacement is usually the first two bytes after the instruction.

The high order bit of the displacementistreated as atwo’s complementsign for the displacement,
so it is possible to reference forward and backward from the current instruction.

The form for requesting this mode of addressing is
BCLR.B #3,ABSFRWD(PC)

The value of the program counter is subtracted from the value of the expression, and the result
is placed in the displacement.

3.12 Program Counter Relative with Index

This mode allows you to specify an index register and a displacement which will be used with
the program counter to form an address. You may specify whether the index register is to be
used as a word, or a long word. The following forms are possible.

CHK.W WORD(PC,D3.L),D4
CHK.W WORD(PC,A4.W),DO0
CHK.W WORD(A4.W),D0

3-4 SSASM Assembler Operand Formats

The last two instructions above are identicalyibris defined in the same relocatable section
as the instruction. Note that the value of the displacement must be between -128 and +127 or
an error will result.

3.13 Immediate Data

Immediate data always begins with a hash matlkwhich must be followed by an expression.
The size of the result of the expression must fit in the size of the immediate data area or an error
will result. This size usually depends on the instruction qualifier.

ADD.W #SIZE1+SIZE2,D0

SIZE1+SIZE2 must be an absolute value, and must be in the range -32768, +32767, since the
operation qualifier is W for word.

3.14 Bcc, BRA, BSR and DBcc Instructions

These instructions all use addressing which is displaced from the program counter. However,
the program counteris notexplicitly coded. They mustall referto expressions which arelocations
in the source file.

The relative distance to the label, from the branch instruction, must be in the range - 32768 to
+32767.

If the relative distance to the label is in the range -128 to +127 then the short form of the Bcc,
BRA, and BSRinstructions may be used. These are two byte instructions where the displacement
is in the second byte.

The DBcc instruction has only the longer form (4 bytes). Some examples are

BHI.S LABEL
BRA.L LOOP
BSR.S SUBONE
DBLT.L COUNTLP

3.15 MOVEM Register Specification

The MOVEM instruction moves multiple registers between storage and the CPU registers. The
formatfor the register specification allows you to specify individual registers, ranges of registers,
or any combination of these.

MOVEM.L DO0-D3/D6/A0/A3/A6,-(SP)
moves registers DO thru D3 (DO, D1, D2 and D3), D6, A0, A3 and A6 to the stack.

Ranges of registers are separated by a ddsand the range must specify the same type of
register, either all data or all address. Ranges and individual registers are separated by slashes.

For another method of specifying registers, see the REG directive in Chapter 4.

Operand Formats SSASM Assembler 3-5

4
Assembler Directives

This chapter discusses the various assembler directives which you may use in your programs.
Assembler directives give instructions to the assembler (not the 68000 chip which will execute
your program) on how to assemble your program.

These directives may be grouped into the following categories.

Miscellaneous Listing Control
OPT PAGE
INCLUDE LIST
FAIL NOLIST
END SPC
TTL
Section Control
ORG
Symbol Definition Data Definition
EQU DS
SET DC

The following sections explain each operation in detail. They are organized alphabetically for
easy reference.

4.1 DC: Define Data Constants

The DC directive allows you to define data areas in your program and initialize them to certain
values. It may be used to define data in terms of bytes, words, or long words.

VALUEONE DC.L 1234

defines a long word (.L) containing the decimal number 1234 and assigns the symbol
VALUEONE as the name of the long word.

Any number of constants can be specified, separated by commas.
NUMLIST DC.W 1,3,4,6,23,16
defines a series of words containing the numbers 1, 3, 4, 6, 23, and 16.

The data items can be any absolute expression
BYTES DC.B A+16,32+.",12*(NUML-BYTEB)

Note that the expression "32+."" above must be written with the number first. If it were written
with the literal first,sSsAsmwould assume this was the declaration of a character staagsm
would expect a comma or end of statement after the string, not the "+32".

Long character strings may be defined by enclosing them in quotes,
MESSAGE1 DC.B 'Value of parameter not found.’,0

defines 29 bytes containing the character string 'Value of parameter not found.” and adds a zero
to the end (null-termination). Character strings passed to 1616/0S system calls require
null-termination, as in the example above. Lower case letters are preserved as is. The symbol
MESSAGEI]s assigned the address of the first byte.

Assembler Directives SSASM Assembler 4-1

An unlimited number of bytes may be declared in a single DC.

4.2 DS: Define Storage

The DS directive defines a storage area and initializes it to zeroes. The length qualifier may be
specified as B for bytes, W for words and L for long words. The operand field contains the
number of data elements (bytes, words or long words) that are to be declared.

INBUFFER DS.B 80 INPUT BUFFER STORAGE
WORD1 DS.W 1
STACKSP DS.L 16 SPACE TO SAVE REGISTERS

INBUFFERIS assigned the address of the first byte in an 80 byte angaRrDis assigned the
address of one word, argfACKSPis assigned the address of the first byte in a 16 long word
area.

The operand field may contain any absolute expression whose value is known at the time the
statement is assembled. (The expression may only use symbols defined prior to the statement.)

An unlimited number of bytes may be declared in a single DS.

4.3 END: Terminate the Source Program

The END directive must be the last line of your source program. The assembler will stop at this
point and will not process any statements after this one.

END
marks the end of your source program.

4.4 EQU: Equate a symbol to a value

The EQU directive will compute the value of its operand, an absolute expression, and assign
the value of the result to the symbol in the label field. The label field must specify a unique
name. It is not possible to recompute a symbol using EQU; see SET below, if recalculation is
required. The label is required.

MEMSIZE EQU 128
will assign the value 128 tRIEMSIZE

Any expression which yields an absolute result may be used in the operand field. All the symbols
used in the expression MUST BE defined prior to the EQU directive in the assembly. Use of

a symbol defined later in the assembly will cause an error. EQU is a handy way to replace a
numeric constant with a more readable symbol, thus making it easier to follow the meaning of
the code. Also, if the value requires a change, you can do so simply by altering the EQU, rather
than by searching for each line that contains the value.

4.5 FAIL: Indicate an error during assembly

The FAIL directive may be used to indicate that an error has been made in specifying conditional
assembly parameters or some other assembly time specification. The syntax of FAIL is

FAIL ERROR+13
the operand field may contain any absolute expression, this is the number of the error that will

bereportedwhenthe FAIL directiveis executed. Thereisanexample of thisiysthis.mac
file.

4-2 SSASM Assembler Assembler Directives

4.6 INCLUDE: Include a Source File

The INCLUDE directive will include the named source file from a disk. The file name may
specify a disk drive and a qualifier. If it doesn’t, the current working disk is used, and the
qualifieris "S".

INCLUDE /INCLUDE/TRAPS.MAC

willinclude the file namedRAPS.MAdrom the/INCLUDE directory of the current working disk.
INCLUDES may be nested to a level of 5.

4.7 LIST: Turn on Listing switch

The LIST directive will cause the source code following it to be listed on the output. LIST will
enable listing of the source program after a NOLIST.

LIST
LIST has no operands and should not have a label.

4.8 NOLIST: Turn off Source Listing

The NOLIST directive will terminate the listing of source statements until a LIST directive is
found. Typical use would be to avoid printing out an INCLUDE file. For example:

NOLIST
INCLUDE /INCLUDE/TRAPS.MAC
LIST

No label or operands should be placed on the NOLIST directive.

4.9 OPT: Change Assembler Options

The OPT directive allows you to set and change various options involving the assembly of your
program. Each option is denoted by a unique keyword, and any number of keywords may be
specified in the operand field of the instruction. Each keyword is separated from the next by a
comma.

OPT BRL,FRL Forward References Long
forces all forward references in branch and other instructions to be assembled using long forms.
The keywords and their meanings are as follows

BRL All forward branches will use the long form (default).

BRS All forward branches will use the short form.

FRL All forward data references will use the long form (default).

FRS All forward data references will use the short form.

PCO PC relative addressing. Backward references will use PC relative
addressing when possible (default).

NOPCO Disable PCO.

4.10 ORG: Define Absolute Origin

The ORG directive defines the start address of a section of code and must have as an operand
an absolute expression.

Assembler Directives SSASM Assembler 4-3

ORG $4000
defines an absolute section starting at hexadecimal location 4000.
The label field, if present, is ignored.
You may not have more than 16 ORG statements in a single assembly module.

4.11 PAGE: Skip to the next page

The listing of your program is continued at the top of the next pagesmwill write the required
number of carriage return-line feeds to the listing file.

The PAGE directive should not have any label or operands. The PAGE directive is not printed
on the listing.

4.12 REG: Define a register list for MOVEM

REG will define a symbol which can be used in the register list portion of the MOVEM
instruction. This allows you to determine what registers are used in a subroutine and insure that
the same registers are saved and restored at entry and exit.

REGILIST REG D0-D3/D6/A0-A5
MOVEM REGI1LIST,-(SP) SAVE REGISTERS
MOVEM (SP)+,REGI1LIST RESTORE REGISTERS

the register list above denotes registers DO thru D3 (D0-D3), D6 and A0 thru A5 (AO- A5).

Sequences of registers are separated by a dash, while different lists are separated by a slash.
Any number of registers may be specified in a list. Registers separated by a dash must be of
the same type: data or address. There is an example of thisspsttaéis.mac file.

4.13 SPC: Insert Spaces in Listing

The SPC directive requires an operand field containing an absolute expression which will cause
a number of blank lines (carriage return-line feeds) to be inserted in the listing file. The same
effect may be had by inserting the null lines yourself in the input source file.

SPC 2
will space 2 lines.
The SPC directive will never space beyond the end of the current listing page.

4.14 SET: Compute a new value for a label
SET is similar to EQU, except that the label field may be redefined any number of times through
the assembly. The syntax is identical to the EQU directive above.

PARM1 SET 16
PARM1 SET 32

will set the value of PARML1 to 16 and 32 respectively.

The same restrictions apply to the SET operand expression as apply to the EQU operand
expression (see EQU above).

4-4 SSASM Assembler Assembler Directives

4.15 TTL: Define the Listing Title

The TTL directive may be used to define a title which will appear at the top of every page of
your listing. The title line is defined as every character in the operand field from the first
non-blank character after the directive to the end of the line, including blanks and tabs.

TTL INPUT/OUTPUT SUBSYSTEM ROUTINES.

There is no limit to the number of TTL'’s in a program. Each TTL will cause a new page to be
started. The TTL directive itself is not printed.

Assembler Directives SSASM Assembler 4-5

5
Structured Constructs

Unfortunately, the vast majority of the structured constructs mentioned below have failed to
work in most versions of this assembler. Don’t count on them (but please do tell us which ones
you got working).

5.1 Structured Programming Constructs

This chapter explains the structured programming constructs#aamprovides to ease your
programming, provide some higher level language benefits, and help you organize your pro-
grams in a more logical and precise manner.

The constructs supplied for structured programming include

. FOR/ENDF

. IF/THEN/ELSE/ENDI
. REPEAT/UNTIL

. WHILE/DO/ENDW.

FOR allows counting loops which may either increment or decrement.

IF allows a choice between one of two alternative sequences of code, one of which may be to
do nothing.

REPEAT allows you to code a general loop with the test of the loop performed at the end.
WHILE allows a general loop with the loop test performed at the beginning.

Unlike other statements s8sASMthe operand field of structured statements may contain blanks
to improve readability.

5.2 FOR/ENDF Loops

The FOR loop permits you to code a counting loop which increments or decrements some counter
by some value. The statements are coded as follows

FOR.q 01 =02TO 03 [BY 04] DO.e
any assembler statements including structured.

ENDF
or

FOR.q 0l = 02 DOWNTO 03 [BY 04] DO.e
any assembler statements including structured.

ENDF

In the above,q’ may be any of the usual qualifiers B, W, or L for the length of the index of the
loop. ‘e’ is the extent of the branch, and may be either S or L for short or long.

‘01’ contains the index of the loop and must be a data alterable location, either a memory location
(not using the PC) or a register. df is a register, then the ‘B’ qualifier may not be used.

‘02’ Is the starting value of the loop; it may be any form of operand, including immediate.
‘03’ Is the ending value of the loop; it may also be any form of operand, including immediate.

‘04’ is the increment (or decrement) value of the loop; it may also use any form of operand. If
‘BY o4’ is not specified (which is what the square brackets mean) it will default to #1.

Structured Constructs SSASM Assembler 5-1

The first form, using theo, is an incrementing loop; while the second form, usingdbg&/NTO
is a decrementing loop. In the first case is added too1, while in the second case, 04 is
subtracted frono1.

For incrementing loop®2 must be less thass for the loop to execute, while for decrementing
loops,02 must be larger thaos.

To execute an incrementing loog, is initially assigned the value @2. If o1l is less thar3
the statements between therand theENDFwill be executed. (If the value a2, assigned to
ol, is greater than the value ot the loop is never executed.)

AttheENDFstatement, the value o4 is added t@1 and the loop is repeated from the comparison
of o1 ando3.

Only certain combinations afl, 03, ando4n are allowed. o1 ando3 must be combinable
in a CMP, CMPA or CMPI instructionol ando4 must be combinable in an ADD, ADDI or
ADDQ instruction.

The following are examples of the use of FOR/ENDF, the statements in vertical bars are the
68000 equivalent of the FOR/ENDF logic.

* A3 POINTS TO 16 BYTES TO ADD UP.

CLR.L DO CLEAR THE RESULT
FOR.L D1 =#0 TO #15 DO.S LOOP OVER 16 NUMBERS

| MOVEQ.L #0,D1 |

|LO: |

| CMP.L #15,D1 |

| BHI.S L1 |

ADD.B 0(A3,D1),D0 ADD THE NEXT NUMBER
ENDF END OF LOOP

| ADDQ.L #1,D1 |

| BRA.S LO |

| L1: |

In the above o’ and ‘L1’ are symbolic internal labels, the real labels will never conflict with
any label acceptable ®sASMrom your program.

5.3 IF/THEN/ELSE/ENDI

IF statements allow you to select one of two possible sequences of statements and machine
instructions; one of the sequences may be empty. The forms of the IF/THEN/ELSE/ENDI
statements are

IF.qg expression THEN.e

any assembler statements including structured.
ENDI

or

IF.qg expression THEN.e

any assembler statements including structured.
ELSE.e

any assembler statements including structured.
ENDI

‘q’ and ‘e’ have the same meanings as in the FOR statement above.

The ‘expression ' above can be composed of a single condition, two operands compared with
a condition, or two comparisons connected by an AND or OR logical operator.

The simplest expression is a condition, which is any branch condition permitted on the Bcc
instruction enclosed inrk" and ">". The following are permitted

5-2 SSASM Assembler Structured Constructs

<CC> <CS> <EQ> <GE> <GT>
<HI> <LE> <LS> <LT> <MI>
<NE> <PL> <VC> <VS>

The following IF statements would generate the code in vertical bars.

IF <EQ> THEN.S
BNE.S LO |
ELSE.S
| BRA.S L1 |
|LO: |
ENDI
[L1: |

Note that the condition in the branch instruction has been reversed from the original condition.
Thisis because the code after thds to be executed whenever the condition is TRUE; therefore
a branch is done when the condition is FALSE. The logical negation of EQ is NE.

If two operands are separated by a condition, then the operands must be combinable in a CMP,
CMPA, CMPI or CMPM instruction. The following might be used

IF.L D3 <NE>#5 THEN.S

| CMP.L #5,D3 |

BEQ.S LO |

ELSE.L

| BRA.L L1 |

[LO: |
ENDI

[L1: |

Note thatssasmreversed the order of the operands for the CMP instruction, and that the NE
condition has been properly reversed for the BEQ instruction.

A condition and a comparison can be combined with the AND logical operator to produce the
following

IF.L <GT> AND D3 <LT> FIELD1(A3) THEN.L
| BLE.L LO |
| CMP.L FIELD1(A3),D3 |
BLT.L LO |
ELSE.L
| BRA.L L1 |
[LO: |
ENDI
[L1: |

Note that since the operands have been reversed in the CMP instruction, the second Bcc still
has a condition of LT. The reversal of the operands changes the original LT to GE (a < b implies
b >= a) and the negation for the branch returns the original LT condition.

Finally, it is possible to combine two comparisons

IF.L D2 <GE> D4 OR D3 <EQ> D5 THEN.L
CMP.L D2,D4 |
BGE.S LO |
CMP.L D3,D5 [
BNE L1 |
LO: |
ELSE.L
BRA.L L2 |
L1: |
ENDI
|L2: |

Structured Constructs SSASM Assembler 5-3

Note the first branch in the IF. If the first condition is true, (D2 is greater than or equal to D4)
we must execute the statements following the IF. The second condition is not tested and a short
branch is done to the label at the end of the IF. Note also that the second condition has been
reversed as usual.

5.4 REPEAT/UNTIL

The REPEAT/UNTIL construct allows you to code a general loop with the repeatition test at
the end of the loop. The loop will always be executed once, before the conditions of the loop
are tested. The format of the REPEAT/UNTIL is

REPEAT _ _
any assembler statements including structured
UNTIL.q expression

where g’ is the length code to be used in evaluating the expression.

The expression must conform to the same rules as given above for the expression in the IF
statement.

The following is an example of a REPEAT/UNTIL loop

* Search the vector of words starting at VECTOR for
* an entry matching the contents of DO.

LEA ENDVEC,A2 A2 - LAST ENTRY IN VECTOR
LEA VECTOR-4,A3 A3 -FIRST ENTRY-1

REPEAT
|LO: |

ADDQ.L #4,A3 INCREMENT POINTER
CMP.L (A3),D0 COMPARE FOR RESULT
UNTIL.L <EQ> OR A2 <EQ> A3
| BEQ.S L1 |
| CMPA.L A2,A3 |
| BNE.S LO |
[L1: |
As usual the code generated $§ASMSs in vertical bars.

Note that any of the expression formats permitted in the IF statement above are also permitted
in the UNTIL statement. The same considerations also apply for their generation. (Eg. the
operands must be of compatible forms.)

5.5 WHILE/DO/ENDW

The WHILE/DO/ENDW construct allows you to code general loops where the condition of the
loop is tested at the beginning. The loop may not be executed at all if the conditions are not
meet.

The format of the WHILE/DO/ENDW loop is

WHILE.q expression DO.e

any assembler statements including structured
ENDW

As above, ¢’ is the qualifier that determines the length codes used in evaluating the expression,
and e’ is used to determine the size of the forward branches, if the expression is not true. The
expression may be any expression valid in a IF statement above. The same restrictions apply.

An example of a WHILE loop is

5-4 SSASM Assembler Structured Constructs

LF

* Count the characters in an input line, result is in DO

EQU 10 LINE FEED
LEA.L INLINE,A3
CLR.L DO

WHILE.B #LF <NE> (A3)+ DO.S

ENDW

|LO:

| CMP.B #LF,(A3)+
| BNE.S L1
ADDI.L #1,D0

| BRA.S LO
[L1:

As usual, the code generated $yASMs in vertical bars.

5.6 Nesting

The above control structures may be nested, contained within one another, to a maximum level

of 16.

The start and end of each control structure which is nested in another must be completely
contained in the enclosing control structure. lItis illegal to have the end of an IF, for example,

after the end of a WHILE the IF is enclosed in.
The following is valid

IF ...
WHILE ...
ENDW
ELSE
REPEAT
IF ...
ENDI
UNTIL ...
ENDI

Note that the WHILE is entirely contained in the first clause of the IF, and the REPEAT is

entirely contained in the second clause. The second IF is also entirely contained in the REPEAT.

Structured Constructs

SSASM Assembler

5-5

6
Macros and Conditional Assembly

This chapter explains the macro and conditional assembly featussg\ef1 Macros allow you
to code repetitive sequences of code in one place, and use modified versions of them in many
other places.

Conditional assembly allows you to customise your program for different parameters such as
storage size, 1/0 devices etc.

6.1 MACRO Definitions

Macro definitions provide the prototype statements for your macros to the assembler. They
must always begin with the MACRO directive and end with the ENDM directive. The MACRO
statement must have a label field which specifies the unique name of your macro.

label MACRO

... macro definition statements
ENDM

The statements between the MACRO and ENDM statements form the prototype for the macro.
Any statements may be used, including assembler directives and conditional assembly directives.

None of the statements in the macro definition are assembled at the time the definition is pro-
cessed, they are stored in memory until required for expansion. (Macros and the assembler
symbol table share the same memory space.)

Macro definitions must precede their usage; therefore itis a good idea to place all of your macro
definitions at the beginning of your program. If you are developing a program in multiple
modules; put your macros in a macro library and use the -m switch assh&command.

All comment and null statements are removed from the macro definition when it is stored in
memory, to save space. They will not be present when the macro is expanded.

An example of a simple macro that executes a trap instruction is

TRAP7 MACRO
TRAP #7
ENDM

6.2 MACRO Expansion

Youinvoke amacroinyour code by placing inthe operation field the name ofthe macro (assigned
on the MACRO directive), followed by an optional qualifier, followed by any parameters. A
label may also be specified if desired.

[label] macro-name[.qualifier] [parameters]
If the TRAP7 macro above were invoked in the assembler, you might see
TRAP7 2 000000 4E47 + TRAP #7

expanded in the code. Thes the section number of this code. T#m®o00 is the address of
the instruction,4e42 is the assembled instruction (hexadecimal) and thandicates the
instruction was assembled inside a macro.

Macro definitions may contain statements that invoke other macros; ie. macro invocations may
be nested. The maximum level of nesting is five. Macro invocations may be recursive, but the
maximum nesting level must not be exceeded.

Macros and Conditional Assembly SSASM Assembler 6-1

6.3 MACRO Parameters

Macro parameters are strings of characters, separated by commas, placed on the macroinvocation
statement. These parameters may be used inside the macro expansion anywhere you wish.

You control the placement of these strings by putting a backslash followed by a digit or letter
in your prototype statements where you wish to place the appropriate parameter.

Parameter O is the qualifier that was used on the macro invocation, and parameters 1 thru 9 are
the first 9 parameters given in the operand field of the macro invocation.

The macro defintion

TESTMAC MACRO
TST.\O \1
BNE.L \2
ENDM
will cause the following expansion
TESTMAC.B DATA,LOCATION
+ TST.B DATA
+ BNE.L LOCATION

Of course the symbolBATAaNndLOCATIONMust be appropriately defined.

You may have up to 35 parameters on a macro invocation. The first 9 are address by 1 thru 9,
the next 26 are addressed using the letters A thru Z. Macro invocation statements may be
continued on more than one line, by simply coding the comma after the last parameter on the
line and continuing with the next parameter on the next line. No comments may be placed

between continuation lines. No null lines are permitted. At least one blank must precede the
parameters on the continuation lines.

The TESTMAC example above could have been coded

TESTMAC.B DATA,
LOCATION

+ TST.B DATA

+ BNE.L LOCATION

WARNING: No other statements ®SASMmMay be continued.

No blanks, tabs or commas are permitted in parameters coded in the above fashion. (Lower
case alphabetics are, however.) To specify a parameter containing these characters, enclose the
parameter in angle brackets

MESSAGE MACRO

DC.B AL

DC.B 0

ENDM
will generate

MESSAGE Please, dont walk on the grass.
+ DC.B 'Please, don”t walk on the grass.’
+ DC.B 0

Parameters may use either form, and the forms may be intermixed.

6.4 Unique Label Generation

It is frequently the case that macros need internal labels for branching and other uses. Quite
often these labels must be unique since the macro may be used more than once in an assembly.

6-2 SSASM Assembler Macros and Conditional Assembly

The \ @ symbol generates a unique 4 digit number which is the same inside a single macro
invocation, butdifferentfor every invocation. Itis simply the sequential number ofthe invocation
found bySSASM

The macro definition

SUM MACRO
CLR.\O \3
LOOP\@:
ADD.\0 (\1)+\3
DBF \2,LOOP\@
ENDM
could generate
SUM.L A2,D1,D0
+ CLR.L DO
+LOOP0001:
+ ADD.L (A2)+,D0
+ DBF D1,LOOP0001
SUM.B A3,D2,D3
+ CLR.B D3
+LOOP0002:
+ ADD.B (A3),D3
+ DBF D2,LO0P0002

The first invocation generated the label LOOP0001, while the second generated LOOP0002.

Nesting invocations does not affect the uniqueness of the number. A nested invocation will be
assigned a different number from the enclosing invocation, and the enclosing number will be
restored after the nested expansion is complete.

6.5 Number of Arguments to a MACRO Invocation

The special name NARG is defined inside macro expansions as the number of arguments
(parameters) coded on the macro invocation statement. The qualifier is not included in this
count. If no parameters are provided the count is zero.

TABLE MACRO
IFNE NARG
DC.W NARG
DC.W \1
IFNE NARG-1
DC.W \2
ENDC
ENDC
might generate
TABLE 2,3
+ IFNE NARG
2 000000 0002 + DC.W NARG
2 000002 0002 + DC.W 2
+ IFNE NARG-1
2 000004 0003 + DC.W 3
+ ENDC
+ ENDC

There are other examples in thacalls.mac file.

Macros and Conditional Assembly SSASM Assembler

6-3

6.6 MEXIT Directive

The MEXIT directive may be used only inside macros. If it is executed during the macro
expansion, the remainder of the macro expansion is skipped, and the next assembler statement
processed is the one after the orginal invocation statement.

Usually, the MEXIT directive will be in a conditionally assembled portion of the macro
expansion.

The MEXIT directive has no label and no operands, although it may have comments.
MEXIT [comments]

6.7 Conditional Assembly

Conditional assembly allows you to code a single general purpose program module, and by
changing parameters assemble itin a number of differing configurations. Itis particularly useful
inside macro expansions.

Conditional assembly provides two basic directives, an IFxx directive, and the ENDC directive.
The IFxx directive is used to test some condition (see below). If that condition is TRUE, the
code between the IFxx and it's corresponding ENDC will be assembled. There are examples
in thesyscalls.mac file.

If the condition is FALSE, the code between the IFxx and the ENDC is NOT assembled.

Each IFxx must be matched with an ENDC. IFxx/ENDC combinations may be nested to any
level (less than 32768). If an enclosing IFxx has a FALSE condition, NONE of the enclosed
code is assembled, even if some enclosed IFxx has a TRUE condition.

The IFxx directive may be used to compare strings, orto compare an absolute numeric expression
against zero. IFC compares two strings for equality, IFNC compares two strings for inequality.

IFC 'string’,’string2’
. assembled if stringl = string2
ENDC

and
IFNC 'stringl’,’string2’
. assembled if string1 not = string2
ENDC

The strings must be enclosed in apostrophes, a single apostrophe must be represented by two
apostrophesin arow. Symbolic substitution of macro parameters may be done inside the strings.

Numeric expressions may be compared to zero using any of the following IFxx directives.
IFEQ expression[=0]

IFNE expression[not=0]

IFLT expression [less than 0]

IFLE expression [less than or=0]
IFGT expression [greater than 0]
IFGE expression [greater than or =0]

If the expression on the IFEQ is equal to zero, the code following the IFEQ will be assembled.
Similarly, if the expression on the IFGT is greater than zero, the code following the IFGT will
be assembled. The other directives operate in a similar manner.

6-4 SSASM Assembler Macros and Conditional Assembly

The following example demonstrates the use of these facilities

SWITCH SET 0
IFEQ SWITCH
NOP ASSEMBLED
ENDC

SWITCH SET 1
IFEQ SWITCH
NOP NOT ASSEMBLED
ENDC

Macros and Conditional Assembly SSASM Assembler

Z
Error Messages and Changes

7.1 Error Messages

The following is a list of all the messages producedbysnmtogether with some explanations

of their possible cause. The number of error messages has been increased considerably, and
they are now very much clearer than in earlier versions. Beginners should remember that the
assembler isot intelligent; if it encounters an error, it may give misleading messages where
the circumstances of the error are not clearcut.

Error Explanation

Number

1 Bad file name
Source file name is not correct, or the source file is not on the disk. Fatal error
(naturally).

2 Bad argument

Parameter list is not valid f@sSASM An invalid parameter may have been entered,
or the format may not be correct.

3 File name not correct. Fatal error. Check the file names given @stéi&vcommand,
they may be too long or have an invalid character.
4 Unexpected EOF

The end of file was encountered unexpectedly. The source program is missing the
END directive, or mismatched conditional assembly directives, or mismatched
MACRO/ENDM directives.

5 Out of memory
Insufficient memory in 1616 to assemble the program.
8 Can't open the input file. Probably the file name is incorrect.
9 Can’t open the input file on pass 2. If this happens report it to Applix immediately.
11 Can’t open output
Can’t open the object file. Insufficient space on the disk may cause this error.
24 Error closing input

Error closing the input file. Report to Applix immediately.
Relocatable instruction used without flag

100 Bad effective address syntax
The syntax of an effective address operand is incorrect.
101 Bad effective address or displacement

Effective address mode is not proper for this instruction and operand combination.
Could also be that the value of a displacement or other data is out of the valid range.

102 Bad label, opcode, or symbol

Invalid label, operation code, or symbol.
103 Bad operand or unexpected EOL

Invalid operand or unexpected end of line.
104 Too many absolute sections

Too many ORG absolute (15 is the maximum).

Error Messages and Changes SSASM Assembler 7-1

105

107

108

110

111

120

130

131

199

998

Bad opcode
Operation code not recognized.

Code generated in OFFSET section

Redefined name
Duplicately defined name.

Undefined name
IDNT misplaced

Bad expression _ _
Error in expression processing. Invalid operand.

Bad assembler directive
Misplaced or invalid assembler directive.

Error in macro, conditional or structured thingy _
Error in macro, conditional assembly, or structured programming constructs.

Include level too deep
Include level is too deep. Limitis 5.

Macro level too deep
Macro level is too deep. Limitis 5.

Phase error
Phase error, label has different value in pass 2 than the one defined in passl. Thisis
usually caused by some previous error. Report to Applix if it persists.

Symbol table file error
Error processing the symbol table overflow file.

Out of memory

Address misalignment (check 'dc.b’ statements)
Cannot allocate memory at $4000

Internal error - report to Applix

Stack frame

7.2 Version changes

Version 1.2
. Output files close correctly when assembly is abortedctr)(c) or by an assembly
error.

Default output file now ends witlexec extension, although use af switch can
override this.

DS pseudo-opcode now fills defined space with zeros, and allocates space for this in
the output file.

The MOVE CCR, <EA> instructions now work.
Error reporting cleaned up. The line where the error occured is printed out.

Version 1.3

Line numbers within include files and macros are now tracked correctly.

Memory allocator is used for internal storage, if running under 1616/0S Version 3.0
or higher. Uses old system if eproms are old. ThasysML.3 and up should also
run on old version 1616/0S.

7-2

SSASM Assembler Error Messages and Changes

. Double quotes (") are accepted as well as single quotes in strings.

. DS pseudo-opcode now works for any amount of space (the 127 byte limit no longer
applies).

Later Versions

. Both * and ; are accepted as comment separators.

Error Messages and Changes SSASM Assembler 7-3

Table of Contents

1 o Yo [0 o [o 1-1
1.1 REEIENCES ...ttt e e e e e e e e e e e e e e e e eeeerenannnnns 1-1
1.2 File Naming CONVENTIONSuuuuiiiiieieeiee ettt e e e e e eeeeeee e 1-2
1.3 Invoking the ASSEMDIETooeiiiiiiee e 1-3
1.4 MAKEXIEI .. e e e s 1-4
1.5 Setting UP YOUE TISKcooiiiiiiiiieiiiiiiie e e e e e e e e e eeeeeeeees 1-4
1.6 EXTOI IMESSAGES . .eeeiiueeeiiiiii e e e eeetta e e e e e ettt s e e e eeeaa e e e e eesta e e eeeeasna e e eeeeennnnaaaas 1-5

2L Lo Te [19Te @0] 01V7=T o] (o] o ISP 2-1
P R O] 1111 1= | £ TP UPPTPPTT 2-1
2.2 INSrUCtioN FOIMALScoiiiiiiiiiiiiiiee e e e e e e e e e e e eeeeenens 2-1
2.3 LADEIS .t a e e e e e e e eeeaaaarae 2-2
2.4 0peration FIeld ... 2-2
2.5 OPEIANGS ...ttt — e e e e e e aeaees 2-3
2.6 COMIMENIS ...ttt e e ettt e e e et ettt e e e e e esta e e e e eeeeaa e e e eaeennnnnns 2-3
A = o] (=13 o] SRR 2-3
A< 3 Mo Tor= Y 1 [o] o I @Xo 10 0| (=] ST 2-5
2.9 SPECIAl NAMES ... 2-5
2.10 COUE GENEIALION ..vviiiiiiiie ettt a e e e e e e e e e e e e e eeeeaebr bbb a e e e e e e aaaaaaas 2-5

3 0perand FOIMALSoouuuiiiiiiiiiiii e e eaenns 3-1
3.1 Source and Destination Fields ... 3-1
3.2 Data REQISLEr DIFECLcciiiiiiiiiiiiiiiieie ettt e e e e e e e e e eeeeeeeannes 3-1
3.3 Address REQISLEr DIFECLuiiiiiiieie it 3-2
3.4 Address RegiSter INITECTcoooiiiiiiiiiiieee e s 3-2
3.5 Address Register Indirect with Postincrementceiiiiiiiiiiieeeeeeeeeeeee, 3-2
3.6 Address Register Indirect With Predecrementccccccoeiiiiiniiiiiiiiiiiininnn, 3-2
3.7 Address Register Indirect with Displacementcccceeeiieiiiiiiiiiiiiieieeiiinn, 3-3
3.8 Address Register Indirect With INdeXcoooiiiiiiiiiiiiii e 3-3
3.9 Absolute Short AAAreSSING ..cceeueeiuuuiiiiiiie ettt e e e e e e e e eeeeeeeeees 3-4
3.10 ADSOIULE LONG ..ottt e e e e e e e e e e eeeeanaeee 3-4
3.11 Program Counter with DIiSplacement ...t 3-4
3.12 Program Counter Relative with INdeX ... 3-4
3. 13 IMMEIAtE DALAceevvviriiiiiiiie e 3-5
3.14 Bcc, BRA, BSR and DBCC INStrUCHIONSooiiiiieiiiiiieeeei e 3-5
3.15 MOVEM Register SPecifiCationcoooviiiiiiiiiiiiiiiiiiieee e eeeeeeeeiieens 3-5

4 ASSEMDIEr DIFECLIVESciiivieeeee e 4-1
4.1 DC: Define Data CONSLANTSuuuuuiiiiiiieieee et e e e e e e eeeeeeeeeeaeens 4-1
4.2 DS: DEfiNG STOMAQE ..evvuuuiiiii ittt e e e e e e e e 4-2
4.3 END: Terminate the Source Programccccceeeeiiiiiiiiiiiiiiiiiiinn e 4-2
4.4 EQU: Equate asymbolto avalue ... 4-2
4.5 FAIL: Indicate an error during assemblycccooviiiiiiiiiiiiiiiieinn 4-2
4.6 INCLUDE: Include a Source Fileoooiiiiiiiiiiiiiiiee e 4-3
4.7 LIST: Turn on Listing SWItCHcoooiiiiii e 4-3
4.8 NOLIST: Turn off SOUrce LIStINGcccevviiiiiiiiiiiiiieee e 4-3
4.9 OPT: Change Assembler OPtiONSciiiiiiiiieeeieiieeeeeeeiiii e 4-3
4.10 ORG: Define ADBSOIUtE OFIgINouviiiiiiiiiiie e 4-3
4.11 PAGE: SKip t0 the NeXt PAJE ...vuuruiiiiiiiei et e e 4-4
4.12 REG: Define a register list for MOVEM ... 4-4
4.13 SPC: Insert SPaceS iN LIStINGiiiiiiiieieeeieiieeeeeeeiiiiirr e eeeeeeeeaeees 4-4
4.14 SET: Compute a new value fora label ..., 4-4

SSASM Assembler i

4.15 TTL: Define the LiSting Titleuueeiiiiiiiiee e 4-5

5 Structured CONSIIUCTScovviieiiiie e e 5-1
5.1 Structured Programming CONSIIUCEScouuiviiiuiiiiiieeeeee e 5-1
5.2 FOR/ENDFE LOOPS ..iiiiiiiiiiiieiiiitiiiaaa s e e e e e e e e e e e eeeeattaass s s s e e e e e e e e e e e eeeeeesensennnnns 5-1
5.3 IF/THEN/ELSE/ENDI ...cooviiiiiiiiieeee ettt 5-2
5.4 REPEAT/IUNTIL covtiiiiiiiiiec ettt e e e e e e e e e e e e 5-4
5.5 WHILE/DO/ENDWcootiiiiiiiieee ettt e e e e e e e e e e e e e s s s nnsenenaenees 5-4
IO V=21 (] o o OSSR PPPPUPUPPPRRRIN 5-5

6Macros and Conditional Assembly ... 6-1
6.1 MACRO DEefiNItIONSoiieieieiiieeeeeee e 6-1
6.2 MACRO EXPANSION ..ottt e e e e e e e e e e eeeeeeenennnes 6-1
6.3 MACRO PArameterscoooiiiiiiiii ittt e e e e e e e e eeenes 6-2
6.4 Unique Label GeNeration ... 6-2
6.5 Number of Arguments to a MACRO Invocationcoovvvvvviiiveiinnninennnn. 6-3
6.6 MEXIT DIFECHIVE ...eeeiiiiiiieeei ettt e et e e e e e e e e e e eeeas 6-4
6.7 Conditional ASSEMDIY ..o 6-4

7 Error Messages and Changesccoooovveiiiiiiiiieiiiiiiie et 7-1
7.1 EITOr MESSAQESiiiiiiiiiii ittt ettt e e e e e e e e e e e eea s 7-1
7.2 VErISION CRANGES ...uuiiiiiiiiiii et e et a e e e e e e aeaaaas 7-2

SSASM Assembler ii

